
BROUGHT TO YOU IN PARTNERSHIP WITH

PAGE 2TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

Table of Contents

HIGHLIGHTS AND INTRODUCTION

03 Welcome Letter
Ricky Esposito, Salesforce Developer/Admin
at DZone

04 About DZone Publications

DZONE RESEARCH

05 Key Research Findings
 AN ANALYSIS OF RESULTS FROM DZONE'S 2023

SOFTWARE INTEGRATION SURVEY

G. Ryan Spain, Freelance Software Engineer, Former
Engineer & Editor at DZone

FROM THE COMMUNITY

16 The Path From APIs to Containers
 HOW MICROSERVICES FUELED THE JOURNEY

Saurabh Dashora, Architect at ProgressiveCoder

21 Full Lifecycle API Management Is Dead
 BUILD APIs FOLLOWING YOUR SOFTWARE

DEVELOPMENT LIFECYCLE WITH AN INTERNAL
DEVELOPER PLATFORM

Christian Posta, VP & Global Field CTO at Solo.io

24 REST vs. Messaging for Microservices
 CHOOSING THE RIGHT COMMUNICATION

STYLE FOR YOUR MICROSERVICES

Swathi Prasad, Software Architect at Syneco
Trading GmbH

29 Assessment of Scalability Constraints
(and Solutions)

 PRACTICAL ADVICE FOR OVERCOMING
SCALABILITY CHALLENGES

Shai Almog, CEO at Codename One

33 Application Architecture Design Principles
 A COORDINATED, CROSS-CUTTING APPROACH

Ray Elenteny, Solution Architect at SOLTECH, Inc.

37 Demystifying Multi-Cloud Integration
 COMPREHENSIVE STRATEGIES AND PATTERNS

FOR INTEGRATING CLOUD SYSTEMS

Boris Zaikin, Senior Software & Cloud Architect at
Nordcloud GmbH, an IBM company

ADDITIONAL RESOURCES

42 Diving Deeper Into Software Integration

43 Solutions Directory

PAGE 3TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

Welcome Letter

Out of all the business-y buzzwords of the rackety 21st
century, "integration" seems to be one of the most pervasive.

To the non-technical, it conjures vague notions of confusing
screens called up by software packages of uncertain value;
meanwhile, other non-technical people are badgering you
to purchase the whole lot without another doubt: "What are
you waiting for??" To the technical, it promises a lengthy
horizon of careful configuration and inevitable anxiety.
Perhaps add some custom code to meet the unique needs
that we alone require?

Integrating different systems to work together in an
efficient and user-friendly way is a continuing quest.
Favoring a collection of smaller interconnected pieces
over a single-entity behemoth with a thousand capabilities
is certainly not a new idea, but it seems to increasingly
reflect global trends in different areas of existence
(preventing this collection from actually functioning like
the same single-entity behemoth that it was supposed to
stray from is another matter entirely).

Microservices particularly seems to be one of the current
all-rages — both in the cloud and, in parallel fashion,
here on the surface. Many people seem to simply want
smaller, friendlier pieces to work with in their everyday
tasks. Some try to buy from smaller businesses for quality
and to help establish a stable atmosphere that will allow
these companies to function.

Perhaps there is hope for those who are tired of massive
corporations that promise to serve as a "one-stop shop" but
really don't do any particular thing very well.

And now for the analogy: the Irish breakfast.

For those who may not be familiar, this meal traditionally
includes eggs, bacon, sausage, black or white pudding,
beans, tomatoes, mushrooms, toast, and some potato
element, all served with coffee, tea, and sometimes even a
Guinness (the whole thing being open to additional tweaks).
Independently flavorful, loosely coupled, scalable, quick to
work with — each component answers to the microservices
criteria surprisingly well.

And although each piece may be individually delicious,
when integrated with the rest of the picture, the finished
plate offers thrills beyond the sum of the parts. Crucially,
modifications can easily be made for particular tastes or
customized use cases. Don't like the grilled tomato? Leave
it raw! Like to operate in the cloud? Have the Guinness!

An ability to separate things and handle them independently
is not only useful to keep machines and our own brains
working, but also necessary for the long-term survival of
both. As one of our expert authors wisely notes, the end
goal is architecture that endures. How do we stay on course
toward this lofty horizon? The way may be rough and steep,
but perhaps the writings in our 2023 Software Integration
Trend Report will prove useful…

Best,

Ricky Esposito

By Ricky Esposito, Salesforce Developer/Admin at DZone

Ricky Esposito, Salesforce Developer/Admin at DZone
@ricky-espo-artist on LinkedIn

Ricky Esposito works with various software integrations to manage DZone's Salesforce platform. Off
screen, he enjoys tap dancing, drawing, and playing the piano.

https://www.linkedin.com/in/ricky-espo-artist/

PAGE 4TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

ABOUT

Meet the DZone Publications team! Publishing
Trend Reports and Refcards year-round, this
team can often be found reviewing contributor
pieces, working with authors and sponsors, and
coordinating with designers. Part of their everyday
includes collaborating across DZone's Content
and Community team to deliver valuable, high-
quality content to global DZone-ians.

DZone Mission Statement
At DZone, we foster a collaborative environment that empowers
developers and tech professionals to share knowledge, build
skills, and solve problems through content, code, and community.

We thoughtfully — and with intention — challenge the status
quo and value diverse perspectives so that, as one, we can inspire
positive change through technology.

Caitlin Candelmo
Director, Content Products at DZone

@CCandelmo on DZone
@caitlincandelmo on LinkedIn

Caitlin works with her team to develop and
execute a vision for DZone's content strategy as it pertains
to DZone publications, content, and community. For
publications, Caitlin oversees the creation and publication
of all DZone Trend Reports and Refcards. She helps with
topic selection and outline creation to ensure that the
publications released are highly curated and appeal to
our developer audience. Outside of DZone, Caitlin enjoys
running, DIYing, living near the beach, and exploring new
restaurants near her home.

Melissa Habit
Senior Publications Manager at DZone

@dzone_melissah on DZone
@melissahabit on LinkedIn

Melissa leads the publication lifecycles of
Trend Reports and Refcards — from overseeing workflows,
research, and design to collaborating with authors
on content creation and reviews. Focused on overall
Publications operations and branding, she works cross-
functionally to help foster an engaging learning experience
for DZone readers. At home, Melissa passes the days reading,
knitting, and adoring her cats, Bean and Whitney.

Lindsay Smith
Senior Publications Manager at DZone

@DZone_LindsayS on DZone
@lindsaynicolesmith on LinkedIn

Lindsay oversees the Publication lifecycles
end to end, delivering impactful content to DZone's global
developer audience. Assessing Publications strategies across
Trend Report and Refcard topics, contributor content, and
sponsored materials — she works with both DZone authors
and Sponsors. In her free time, Lindsay enjoys reading,
biking, and walking her dog, Scout.

Lauren Forbes
Content Strategy Manager at DZone

 @laurenf on DZone
@laurenforbes26 on LinkedIn

Lauren identifies and implements areas
of improvement when it comes to authorship, article
quality, content coverage, and sponsored content. She
also oversees our team of contract editors, which includes
recruiting, training, managing, and fostering an efficient and
collaborative work environment. When not working, Lauren
enjoys playing with her cats, Stella and Louie, reading, and
playing video games.

Lucy Marcum
Publications Coordinator at DZone

 @LucyMarcum on DZone
@lucy-marcum on LinkedIn

As a Publications Coordinator, Lucy spends
much of her time working with authors, from sourcing new
contributors to setting them up to write for DZone. She
also edits publications and creates different components
of Trend Reports. Outside of work, Lucy spends her time
reading, writing, running, and trying to keep her cat, Olive,
out of trouble.

Meet the Team

Jason Cockerham
Community Engagement Manager at DZone

 @Jason Cockerham on DZone
@jason-cockerham on LinkedIn

Jason heads the DZone community, driving
growth and engagement through new initiatives and
building and nurturing relationships with existing members
and industry subject matter experts. He also works closely
with the content team to help identify new trends and hot
topics in software development. When not at work, he's
usually playing video games, spending time with his family,
or tinkering in his garage.

DZone Publications

https://dzone.com/users/2751060/ccandelmo.html
https://www.linkedin.com/in/caitlincandelmo/
https://dzone.com/users/3762957/dzone-melissah.html
https://www.linkedin.com/in/melissahabit/
https://dzone.com/users/3342467/dzone-lindsays.html
https://www.linkedin.com/in/lindsaynicolesmith/
https://dzone.com/users/3272524/laurenf.html
https://www.linkedin.com/in/laurenforbes26/
https://dzone.com/users/4578118/lucymarcum.html
https://www.linkedin.com/in/lucy-marcum/
https://dzone.com/users/4823066/jason-cockerham.html
https://www.linkedin.com/in/jason-cockerham/

PAGE 5TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

ORIGINAL RESEARCH

In February 2023, DZone surveyed software developers, architects, and other IT professionals in order to understand the state of
software integration.

Major research targets were:

1. Integration practices and systems

2. Integration architectures and paradigms

3. Integration development experience

Methods: We created a survey and distributed it to a global audience of software professionals. Question formats included
multiple choice, free response, and ranking. Survey links were distributed via email to an opt-in subscriber list, popups on
DZone.com, the DZone Core Slack workspace, and various DZone social media channels. The survey was opened on February
11th and ended on March 1st; it recorded 117 complete and partial responses.

In this report, we review some of our key research findings. Many secondary findings of interest are not included here.

Research Target One: Integration Practices and Systems
Motivations:

1. To start, we wanted to know what respondents and their organizations were integrating. Software integration is used to
meet a wide variety of different business requirements and to solve a plethora of application problems and pain points;
it can cover adding CRM or payment functionality to web apps, supplying specific data to clients' software, or even just
getting analytics from one internal enterprise system to another. So we tried to get an idea of what types of systems were
being integrated, and how much respondents worked on inbound, outbound, and internal API integrations.

2. Thoughtful design can curb any potential integration difficulties — a topic we will look at more closely later in these
findings — before they arise. There are many factors to keep in mind when trying to avoid complications, from the
method by which data is transferred and the location it is stored to the complexity of the integrated systems themselves.
We asked respondents which factors were most important to them when approaching integration problems.

3. One crucial aspect of API integration development is ensuring that the API is accessible to any authorized clients, ideally
with minimal complexity exposed to the front end. With that in mind, we asked respondents their preferred method of
simplifying API development and maintenance.

TYPES OF INTEGRATED SYSTEMS
From integrating organizational sales data with business intelligence applications to integrating personal LinkedIn
notifications with a smart home assistant, it seems that everything can be integrated these days. We wanted to see how
software professionals were using integration and APIs to build their applications, so we asked:

What types of systems does your organization integrate? Select all that apply.

and

Select the following types of APIs that you currently work on:

Results (n=110 and n=104, respectively):

SEE FIGURE 1 AND 2 ON NEXT PAGE

Key Research Findings
An Analysis of Results from DZone's 2023 Software
Integration Survey

By G. Ryan Spain, Freelance Software Engineer, Former Engineer & Editor at DZone

PAGE 6TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

Figure 1

0 20 4010 30 50 60

CRM

Document management

E-commerce

ERP

Financial

Help desk

IoT

Knowledge management

Mobile

Payroll/HR

Project management

Social networks

Supply chain management

VoIP/telepresence

Other - write in

Blog/CMS

BI/analytics

TYPES OF INTEGRATED SYSTEMS

Figure 2

Internal -
APIs for your

organization’s use

External/third-party -
APIs your organization

subscribes to

Partner facing -
APIs your organization

exposes for others to use

0

25

50

75

100

TYPES OF APIs (INTERNAL, INBOUND, AND OUTBOUND)

PAGE 7TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

Observations:
1. Generally, there was a moderately even spread of responses among the types of integrated systems we offered in the

survey question. The 16 provided selections received an average of 29% of responses, with a 10% standard deviation. This
helps to illustrate how varied integration requirements can be as well as how commonly applications utilize integrated
services. 94% of all respondents said their organization integrated at least one type of system; more than half of
respondents (56%) said their organization integrated at least four.

2. "BI/analytics" was the most common type of integrated system (52%), followed by "CRM" and "Financial" integrations
(both 45%). "ERP" (38%), "Mobile" (33%), "Document management" (32%), and "E-commerce" (30%) all broke 30%. "Social
networks" had the lowest response rate with only 8%. Notable write-in responses included healthcare, version control, and
authentication/authorization integrations.

3. The last time we collected survey data on types of integrated systems was for our 2019 API Management Trend Report.
Interestingly, in the three-plus years since that survey, the change in response rates was relatively minor. The most
significant increases from 2019's results were "Supply chain management" (+14%), "CRM" (+8%), "Help Desk" (+7%), "ERP"
(+6%), and "VoIP/telepresence" (also +6%). "Social networks," on the other hand, fell 7% since 2019. All other given responses
were within a 5% delta between 2019 and 2023.

4. Almost all respondents (91%) said that they work on internal APIs just for intra-company use. 68% of respondents said they
work with external/third-party APIs that their company subscribes to, while 56% said they work with partner-facing APIs
their organization exposes to external clients.

APPROACHING INTEGRATION PROBLEMS
Software development is, at its root, an exercise in problem solving. Sometimes problems must be solved ex post facto: New
software is generally created to solve an existing problem; squashing bugs and refactoring legacy code are just fixing mistakes,
eliminating vulnerabilities, or strengthening fragile systems that are already there. Many of these problems, however, can be
solved before they even exist — careful consideration and design can create more resilient, robust software.

We wanted to know the factors that mattered most to respondents in preventing integration problems, so we asked:

In your personal opinion, what are the most important factors to consider when approaching integration problems? Select
all that apply.

Results (n=108):

Figure 3

Coupling Data format
(current ease
of use, future
extensibility)

Data timelines
(latency,

frequency)

Simplicity Other -
write in

Specific
technologies
(ease of use,
cost, lock-in)

Data vs.
processing locality

(remote reads/writes,
other invocations)

Synchronous
vs.

asynchronous

0

20

40

60

80

CONSIDERATIONS WHEN APPROACHING INTEGRATION PROBLEMS

PAGE 8TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

Observations:
1. Much like we saw with the results from our question about which types of systems respondents' organizations were

integrating, we again found minimal fluctuation in response rates regarding factors to consider when approaching
integration problems. On average, the seven selections given received 46% of responses, with a standard deviation of 9%.
This could be an indication that many of these factors may be more or less situationally specific than others, rather than
more or less important.

2. Still, some options were focused on more than others. "Data format (current ease of use, future extensibility)" was the
top response (62%), followed by "Synchronous vs. asynchronous" (52%), "Coupling" (47%), and "Simplicity" (46%). These
options are more universally applicable to API design and integration in general: Data format and sync vs. async are both
necessary decisions to make when integrating with any system, even if those decisions aren't necessarily top of mind,
while loose coupling and minimizing complexity are best practices in all kinds of systems — and integrated systems are
no exception.

3. Once again, the most recent previous data we have for this question is from our survey conducted in 2019, and in that
time, there have been a few significant shifts. "Specific technologies (ease of use, cost, lock-in)" responses increased by 7%
since 2019, which could imply a rise in adoption of integration technologies and platforms. "Synchronous vs. asynchronous"
responses decreased by 9%, potentially indicating an increased familiarity with the use cases for each, causing the decision
between sync and async communication to be less a "pressing consideration" and more second nature.

"Data vs. processing locality (remote reads/writes and other invocations)" increased by 6% since 2019. This could
possibly be due to concerns about performance issues and cloud sprawl side effects; however, "Data timeliness
(latency, frequency)" decreased by 10%, which might imply less general concern over high-performance integrations.
It does seem more fitting, though, that these two linked options received almost the same response rates this year.

SIMPLIFYING API DEVELOPMENT AND MAINTENANCE
Simplifying API integration (i.e., reducing unnecessary complexity for the client) is an important part of creating accessible
APIs — and what good is an API if it can't be accessed? We asked respondents to choose one of three potential best practices/
design patterns to explain how they simplified their APIs:

How do you simplify API integration development and maintenance?

Results (n=103):

Figure 4

SIMPLIFYING API INTEGRATION DEVELOPMENT AND MAINTENANCE

Backend for frontend (BFF)

Rigorous documentation
and business processes

Other - write in

API gateway

57.3%

4.9%

23.3%

14.6%

Observations:
1. Most respondents (57%) said they primarily use an API gateway to simplify integration development and maintenance,

while 23% said they use the backend for frontend (BFF) pattern, and 15% said they opt for "Rigorous documentation and
business processes" instead.

2. From our 2022 integration survey results, there was no significant change in the percentage of respondents choosing
"API gateway" (58% in 2022 vs. 57% in 2023). However, respondents favoring BFF rose 5% since 2022 (from 18% to 23%),
while respondents in the camp of documentation and business processes fell by 6% (from 21% to 15%). While this change

PAGE 9TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

is minor, it does hint that docs and processes alone are not enough to keep API complexity in check, and that well-
executed, formal design patterns are necessary for simplifying API integration. And BFF's modest popularity increase
points to the growing need to factor all kinds of clients into API design.

3. Given that BFF is often considered a variant of the API gateway pattern, it is possible that limiting respondents to
one selection in this question downplays the popularity of BFF. In future research, we would like to look more at how
these two patterns are linked, as well as examine additional patterns/practices that may help simplify API integration
development and maintenance.

Research Target Two: Integration Architectures and Paradigms
Motivations:

1. As practices and approaches to working around integration problems and simplifying API access change, so too do the
architectures favored for implementing those APIs and integrations. To find out more about potential changes in the
landscape of architecture paradigms, we asked respondents how their organizations were architecting their APIs.

2. There are numerous reasons why organizations might shift which architecture paradigms they favor, and we wanted to
know more about those reasons. We asked respondents if they had worked on transitioning either SOAP to REST or REST
to GraphQL and followed up by asking for their reasons behind the adoption of the new paradigm.

3. Beyond these architectural paradigms, we also wanted to know what kinds of architecture patterns and styles were
being used, asking respondents if their organization utilized cloud-based architectures, event-driven architectures,
microservices architectures, and more.

PARADIGM PREVALENCE
In our 2022 Enterprise Application Integration Trend Report "Key Research Findings," we described a condensed history
of integration architectures in the form of a miniature epic (we won't repeat that tale here, but if you have not read it, we
recommend checking it out on pages 11-12). Our research goal was to examine how often different API architecture paradigms
were being used in respondents' organizations. Now, we want to revisit the popularity of these paradigms once again to see
how often these different approaches are taken and how it compares to the results that we received last year. We asked:

What percent of each of the following API architectures exist in your organization?

Results (n=102):

Table 1

API ARCHITECTURE PREVALENCE

API Architecture Avg. % of Integrations Sum n=

SOAP 18.4% 1,285 70

REST 67.1% 6,779 101

GraphQL 13.4% 815 61

gRPC 8.9% 454 51

Other 17.2% 758 44

Observations:
1. Unsurprisingly, REST was by far the most popular API architecture paradigm — on average, respondents said that

two-thirds of their organizations' architectures were REST-based (67%). Almost all respondents (98%) said that at least
some REST existed in their org, 79% of respondents said at least 50% of their orgs' API architectures used REST, and 47%
estimated this value to be 75% or greater. 15% of respondents said that 100% of the API architectures at their organization
used REST.

2. SOAP and GraphQL architectures were reported much less commonly. On average, respondents estimated their
organizations' API architectures consisted of 18% SOAP and 13% GraphQL. 54% of respondents said at least some SOAP
was present in their organization, and 45% said at least some GraphQL was present. This represents a significant decrease
in reported GraphQL usage from the results we saw in our 2022 Integration survey, where the average response was 23%;
SOAP's average, on the other hand, was relatively unchanged, down 2% from 20% in 2022.

https://dzone.com/trendreports/enterprise-application-integration

PAGE 10TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

3. Respondents who said their organization runs any microservices (67%), on average, estimated that their organization uses
GraphQL much more than respondents saying their organization did not run any microservices; the former's average
GraphQL usage was 16%, compared to only a 6% average for the latter.

REASONS FOR ADOPTION
While overall paradigm usage levels may not have changed in the ways we expected, there are still organizations abandoning
more antiquated paradigms in favor of more modern solutions, and we wanted to know what advantages the newer solutions
offered that influenced adoption. We asked respondents if they had worked on these paradigm transitions, and if so, what their
reasons were for adopting the new solution:

Have you ever worked on transitioning integrations from SOAP to REST?

Why did you adopt REST? Select all that apply.

and

Have you ever worked on transitioning integrations from REST to GraphQL?

Why did you adopt GraphQL? Select all that apply.

Results (n=101):

Figure 5

WORK ON TRANSITIONING INTEGRATIONS: SOAP TO REST AND REST TO GRAPHQL

NoYes

49%52%

27%

73%

SOAP → REST REST → GRAPHQL

Table 3

REASONS FOR ADOPTING GRAPHQL

% n=

Faster client development 45.8% 11

Faster app performance 58.3% 14

Wanted to support multiple clients
with one API

45.8% 11

To unify customer experiences across
different clients/business segments

25.0% 6

General desire to stay current 33.3% 8

Other - write in 16.7% 4

Table 2

REASONS FOR ADOPTING REST

% n=

Specific commitment to HTTP verbs 54.2% 26

Easier generation of documentation 45.8% 22

Faster client development 64.6% 31

Faster app performance 37.5% 18

Wanted to support multiple clients with one API 54.2% 26

To unify customer experience across different
clients/business segments

39.6% 19

General desire to stay current 41.7% 20

Other - write in 18.8% 9

PAGE 11TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

Observations:
1. About half of respondents (49%) said they have worked on transitioning from SOAP to REST, while only about one-quarter

(27%) said they have worked on transitioning from REST to GraphQL. This aligns with the paradigm prevalence statistics
we found in the previous section, and even seems a little high for GraphQL adoption considering the low average usage
response. Given that from another survey question we saw that 33% of respondents said their organization uses GraphQL
in production, this may indicate that GraphQL is being adopted for more specific purposes within an organization, while
REST is replacing SOAP more generally.

2. Most respondents who said they have worked on transitioning integrations from SOAP to REST said they did so for "Faster
client development" (65%), for a "Specific commitment to HTTP verbs" (54%), and because they "Wanted to support
multiple clients with one API" (54%).

Compared to last year's survey, 14% fewer respondents said they adopted REST for "Easier generation of
documentation" (46% in 2023 vs. 60% in 2022), 7% fewer respondents adopted REST for "Faster client development"
(65% in 2023 vs. 72% in 2022), and 7% fewer respondents adopted REST for a "Specific commitment to HTTP verbs"
(54% in 2023 vs. 61% in 2022). This year, 15% more respondents said they adopted REST because of a "General desire to
stay current" (42% in 2023 vs. 27% in 2022).

3. For respondents who have worked on transitioning from REST to GraphQL, the primary motivations were "Faster app
performance" (58%), "Faster client development" and "[Wanting] to support multiple clients with one API" (46%), and a
"General desire to stay current" (33%).

As opposed to reasons for switching to REST, changes in reasons for switching to GraphQL from last year were a bit
less drastic. 8% fewer respondents said they adopted GraphQL for "Faster client development" (46% in 2023 vs. 54%
in 2022), and 7% fewer adopted GraphQL "To unify customer experiences across different clients/business segments"
(25% in 2023 vs. 32% in 2022). This year, 6% more respondents adopted GraphQL because of a "General desire to stay
current" (33% in 2023 vs. 27% in 2022).

ARCHITECTURE PATTERNS AND STYLES
In addition to API architecture paradigms, we also wanted to get a sense of what kind of architectural patterns organizations
were using in the systems underlying (or interconnected with) those integrations. We asked respondents:

What software architecture patterns and styles are in use at your organization? Select all that apply.

Results (n=100):

Figure 6

Cloud-based/
virtualized-

middleware/
space-based

Event-driven Layered
(n-tier)

Microservices MVC and similar
(MVVM, MVP,
presentation/

business)

Microkernel/
plugin-based

Other -
write in

0

20

40

60

80

SOFTWARE ARCHITECTURE PATTERNS AND STYLES IN USE

PAGE 12TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

Observations:
1. Out of the six options supplied, respondents, on average, said their organization uses about three of them (2.86), and

there were several popular architecture options. "Event-driven" was the most used, with three-quarters of respondents
selecting this option (75%). Also favored were "Microservices" (68%), "Cloud-based/virtualized-middleware/space-based"
(66%), "MVC and similar (MVVM, MVP, presentation/business)" (57%), and "Layered (n-tier)" (50%), all of which having at
least half of respondents saying that these are used in their organization. "Microkernel/plugin-based" was by far the least
popular pattern (14%).

2. Once again, the latest data we have regarding these software architecture patterns is from our 2019 API Management
survey, and a lot has changed since then. Several of these patterns have seen significant increases in that time: "Event-
driven" architecture increased 26% from 48% in 2019, "Cloud-based/virtualized-middleware/space-based" increased 10%
from 56%, "Layered (n-tier)" increased 9% from 41%, and even "Microkernel/plugin-based" increased 8% from 5% in 2019.
The only patterns that did not see significant change were "Microservices" (68% in 2023 vs. 66% in 2019) and "MVC and
similar (MVVM, MVP, presentation/business)" (57% in 2023 and 2019).

3. Company size played a factor in the prevalence of several architecture patterns. Larger organizations (those with ≥100
employees) were 24% more likely to use event-driven architectures (76%) than smaller ones (52%), 23% more likely to use
microservices architectures (75% vs. 52%), and 17% more likely to use cloud-based architectures (73% vs. 56%). There was no
significant variation in the uses of layered, microkernel, or MVC architectures between larger and smaller companies.

Research Target Three: Integration Development Experience
Motivations:

1. As the complexity of software systems grows with time, integrating with other systems becomes more and more
commonplace — and necessary. So the act of developing software becomes increasingly an act of connecting nodes as
much as it is an act of creating nodes. We wanted to know how much time software professionals spent integrating, and
whether they enjoyed this aspect of the job.

2. Diving further into the subsets of API management to which developers dedicate time, we wanted to know which primary
aspects of API management software professionals were working on. We listed 28 different aspects and asked respondents
to indicate whether they had contributed to each, as well as whether they had implemented each themselves.

TIME AND ENJOYMENT
The process of developing software involves countless sub-processes: front ends, back ends, databases, version control systems,
libraries, frameworks, project management tools… the list goes on. Generally speaking, developers have to spread their time
between dozens (at least) of these sub-processes. Integration as a concept can be used to describe a subset of these. We
wanted to know how much of their time, on average, software professionals spend working within that subset. We asked
respondents the following:

What percent of your time at work is spent managing API integrations?

Results (n=100):

Figure 7

PERCENT OF TIME SPENT WORKING ON API INTEGRATION MANAGEMENT

0

5

10

15

20

25

91-10081-9071-8061-701-10 11-20 21-30 31-40 51-6041-50

8%

15%

14%

16%

12%

20%

6% 6%

1%
2%

PAGE 13TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

Additionally, given the time developers have to dedicate to integration, we wanted to get a sense of whether this was work that
respondents found enjoyable, asking:

Agree/disagree: Your favorite part of software development is designing and building integrations.

Results (n=110):

Figure 8

ENJOYMENT OF DESIGNING AND BUILDING INTEGRATIONS

Neutral

Agree

Strongly agree

Disagree

22%

1%

31%

33%

9%
5%

Strongly disagree

Not applicable

Observations:
1. On average, respondents estimated they spend 39% of their time managing API integrations, with a standard deviation of

23% and a median of 37%. Last year, we saw respondents saying 38% of their time was spent managing API integrations,
with a 24% standard deviation and 30% median. As such, the data this year has not significantly changed, on average,
since last year, but it does appear to be more normalized.

88% of respondents said they spend more than 10% of their time managing APIs, more than half (51%) said they spend
more than one-third of their time doing so, and almost a quarter of respondents (23%) said they spend more than half
their time managing API integrations.

2. Respondents at organizations using microservices spend more of their time, on average, managing API integrations
(estimating 43% of their time) than those at organizations not using microservices (only estimating 32% of their time).
Likewise, respondents at larger organizations — orgs with ≥ 100 employees — also spent more time, on average,
managing APIs, estimating 42% of their time vs. the 36% estimated by those at organizations with < 100 employees.

It should be noted that microservices use and company size were also correlated, with 73% of respondents at companies
with ≥ 100 employees saying their organization uses microservices vs. 52% at organizations with < 100 employees.

3. Most respondents either "Strongly agree" (33%) or "Agree" (31%) that their favorite part of software development is
designing and building integrations, 22% said they feel "Neutral," and a relatively small minority either "Disagree" (9%) or
"Strongly disagree" (5%) that designing and building integrations is their favorite part.

This year, there were no significant differences in the responses about integration design and building favorability
compared to the responses we received in last year's survey; all options were within 3% of last year's responses, well
within the margin of error for the sample.

CONTRIBUTIONS TO API MANAGEMENT
As mentioned in the previous section, integration consists of a wide range of sub-processes. Just like "developing software" can
describe a collection of any number of efforts, so too can "integration." To determine which of these sub-processes respondents
were more likely to be working on, we offered a wide (though certainly not exhaustive) selection of API development aspects
and asked respondents to answer if they had either contributed or implemented (or both) to each aspect:

Which of the following primary aspects of API management have you contributed to?

Results (n=104):

SEE TABLE 4 ON NEXT PAGE

PAGE 14TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

Table 4

API MANAGEMENT CONTRIBUTIONS AND IMPLEMENTATIONS

% Contributed Ideas % Implemented

API creation (e.g., resources, contracts) 74% 85%

Authentication 56% 65%

Authorization 58% 64%

API publication and deployment 59% 61%

Testing 53% 53%

Monitoring 54% 44%

Security 48% 42%

API discovery 53% 41%

Availability 43% 39%

Identity mediation (e.g., OAuth, SAML) 43% 39%

API proxy (e.g., setup, maintenance) 47% 38%

Version management 45% 38%

Encryption 40% 37%

Key and certificate management 35% 31%

Lifecycle management 45% 31%

Quality of service 49% 31%

Service routing 30% 31%

Service orchestration 37% 30%

Governance 37% 29%

Interface translation 30% 27%

Service-level monitoring 33% 27%

Service discovery 37% 25%

Scaling management 40% 24%

Service-level agreements (SLAs) 30% 24%

Service registry 33% 23%

Traffic management 32% 23%

Transformation 34% 23%

Threat protection 32% 20%

Observations:
1. On average, respondents contributed to about 11 (10.7) of the 28 API management aspects provided in this question,

with a standard deviation of 9.09. Respondents implemented an average of about nine (9.3) of these aspects, with a
standard deviation of 7.80. The median number of contributions and implementations was nine.

2. "API creation (e.g., resources, contracts)" was by far the most popular aspect of API management to be both
contributed to and implemented; 74% of respondents said they had contributed to API creation, and 85% said they
have implemented it themselves. This may be partially attributed to this particular option being broader and more
generalized than most of the other response options, but it still serves to show how ubiquitous API creation is in the
modern software development landscape.

PAGE 15TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

3. Other popular API management aspects included "Authentication" (65% implemented, 56% contributed), "Authorization"
(64% implemented, 58% contributed), "API publication and deployment" (61% implemented, 59% contributed), and
"Testing" (53% implemented and contributed), each of which having been implemented by at least half of respondents.

Future Research
Our analysis here only touched the surface of the available data, and we will look to refine and expand our Software Integration
survey as we produce further Trend Reports. Some of the topics we didn't get to in this report, but were incorporated in our
survey, include:

• Integration difficulties

• Message schema enforcement

• GraphQL architectures

• Microservices benefits and pains

• API security and privacy sentiments

Please contact publications@dzone.com if you would like to discuss any of our findings or supplementary data.

G. Ryan Spain, Freelance Software Engineer, Former Engineer & Editor at DZone
@grspain on DZone | @grspain on GitHub and GitLab | gryanspain.com

G. Ryan Spain lives on a beautiful two-acre farm in McCalla, Alabama with his lovely wife and adorable
dog. He is a polyglot software engineer with an MFA in poetry, a die-hard Emacs fan and Linux user, a
lover of The Legend of Zelda, a journeyman data scientist, and a home cooking enthusiast. When he isn't

programming, he can often be found listening to The Adventure Zone with a glass of red wine or a cold beer.

mailto:publications%40dzone.com?subject=Trend%20Report%20research%20inquiry
https://dzone.com/users/1287915/grspain.html
https://github.com/grspain
https://gitlab.com/grspain
http://gryanspain.com/

PAGE 16TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

CONTRIBUTOR INSIGHTS

In recent years, the rise of microservices has drastically changed the way we build and deploy software. The most important
aspect of this shift has been the move from traditional API architectures driven by monolithic applications to containerized
microservices. This shift not only improved the scalability and flexibility of our systems, but it has also given rise to new ways of
software development and deployment approaches.

In this article, we will explore the path from APIs to containers and examine how microservices have paved the way for
enhanced API development and software integration.

The Two API Perspectives: Consumer and Provider
The inherent purpose of building an API is to exchange information. Therefore, APIs require two parties: consumers and
providers of the information. However, both have completely different views.

For an API consumer, an API is nothing more than an interface definition and a URL. It does not matter to the consumer
whether the URL is pointing to a mainframe system or a tiny IoT device hosted on the edge. Their main concern is ease of use,
reliability, and security.

An API provider, on the other hand, is more focused on the scalability, maintainability, and monetization aspects of an API.
They also need to be acutely aware of the infrastructure behind the API interface. This is the place where APIs actually live, and
it can have a lot of impact on their overall behavior. For example, an API serving millions of consumers would have drastically
different infrastructure requirements when compared to a single-consumer API. The success of an API offering often depends
on how well it performs in a production-like environment with real users.

With the explosion of the internet and the rise of always-online applications like Netflix, Amazon, Uber, and so on, API
providers had to find ways to meet the increasing demand. They could not rely on large monolithic systems that were difficult
to change and scale up as and when needed. This increased focus on scalability and maintainability, which led to the rise of
microservices architecture.

The Rise of Microservices Architecture
Microservices are not a completely new concept. They have been around for many years under various names, but the official
term was actually coined by a group of software architects at a workshop near Venice in 2011/2012. The goal of microservices has
always been to make a system flexible and maintainable. This is an extremely desirable target for API providers and led to the
widespread adoption of microservices architecture styles across a wide variety of applications.

The adoption of microservices to build and deliver APIs addressed several challenges by providing important advantages:

• Since microservices are developed and deployed independently, they allow developers to work on different parts of the
API in parallel. This reduces the time to market for new features.

• Microservices can be scaled up or down to meet the varying demands of specific API offerings. This helps to improve
resource use and cost savings.

• There is a much better distribution of API ownership as different teams can focus on different sets of microservices.

• By breaking down an API into smaller and more manageable services, it becomes theoretically easier to manage outages
and downtimes. This is because one service going down does not mean the entire application goes down.

The API consumers also benefit due to the microservices-based APIs. In general, consumer applications can model better
interactions by integrating a bunch of smaller services rather than interfacing with a giant monolith.

The Path From APIs to Containers
How Microservices Fueled the Journey

By Saurabh Dashora, Architect at ProgressiveCoder

https://www.sify.com/digital-transformation/why-amazon-netflix-and-uber-prefermicroservices-over-monoliths/
https://www.dataversity.net/a-brief-history-of-microservices/

PAGE 17TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

Figure 1: APIs perspectives for consumer and provider

Since each microservice has a smaller scope when compared to a monolith, there is less impact on the client application in
case of changes to the API endpoints. Moreover, testing for individual interactions becomes much easier.

Ultimately, the rise of microservices enhanced the API-development landscape. Building an API was no longer a complicated
affair. In fact, APIs became the de facto method of communication between different systems. Nonetheless, despite the huge
number of benefits provided by microservices-based APIs, they also brought some initial challenges in terms of deployments
and managing dependencies.

Streamlining Microservices Deployment With Containers
The twin challenges of deployment and managing dependencies in a microservices architecture led to the rise in container
technologies. Over the years, containers have become increasingly popular, particularly in the context of microservices. With
containers, we can easily package the software with its dependencies and configuration parameters in a container image and
deploy it on a platform. This makes it trivial to manage and isolate dependencies in a microservices-based application.

Containers can be deployed in parallel, and each deployment is predictable since everything that is needed by an application
is present within the container image. Also, containers make it easier to scale and load balance resources, further boosting the
scalability of microservices and APIs. Figure 2 showcases the evolution from monolithic to containerized microservices:

Figure 2: Evolution of APIs from monolithic to containerized microservices

Due to the rapid advancement in cloud computing, container technologies and orchestration frameworks are now natively
available on almost all cloud platforms. In a way, the growing need for microservices and APIs boosted the use of containers
to deploy them in a scalable manner.

PAGE 18TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

The Future of Microservices and APIs
Although APIs and microservices have been around for numerous years, they have yet to reach their full potential. Both are
going to evolve together in this decade, leading to some significant trends. One of the major trends is around API governance.
Proper API governance is essential to make your APIs discoverable, reusable, secure, and consistent. In this regard, OpenAPI, a
language-agnostic interface to RESTful APIs, has more or less become the prominent and standard way of documenting APIs.
It can be used by both humans and machines to discover and understand an API's capabilities without access to the source code.

Another important trend is the growth in API-powered capabilities in the fields of NLP, image recognition, sentiment analysis,
predictive analysis, chatbot APIs, and so on. With the increased sophistication of models, this trend is only going to grow
stronger, and we will see many more applications of APIs in the coming years. The rise of tools like ChatGPT and Google Bard
shows that we are only at the beginning of this journey.

A third trend is the increased use of API-driven DevOps for deploying microservices. With the rise of cloud computing and
DevOps, managing infrastructure is an extremely important topic in most organizations. API-driven DevOps is a key enabler
for Infrastructure as Code tools to provision infrastructure and deploy microservices. Under the covers, these tools rely on APIs
exposed by the platforms.

Apart from major ones, there are also other important trends when it comes to the future of microservices and APIs:

• There is a growing role of API enablement on the edge networks to power millions of IoT devices.

• API security practices have become more important than ever in a world of unprecedented integrations and security threats.

• API ecosystems are expanding as more companies develop a suite of APIs that can be used in a variety of situations to
build applications. Think of API suites like Google Maps API.

• There is an increased use of API gateways and service meshes to improve reliability, observability, and security of
microservices-based systems.

Conclusion
The transition from traditional APIs delivered via monolithic applications to microservices running on containers has opened
up a world of possibilities for organizations. The change has enabled developers to build and deploy software faster and more
reliably without compromising on the scalability aspects. They have made it possible to build extremely complex applications
and operate them at an unprecedented scale.

Developers and architects working in this space should first focus on the key API trends such as governance and security.
However, as these things become more reliable, they should explore cutting-edge areas such as API usage in the field of
artificial intelligence and DevOps. This will keep them abreast with the latest innovations. Despite the maturity of the API and
microservices ecosystem, there is a lot of growth potential in this area. With more advanced capabilities coming up every day
and DevOps practices making it easier to manage the underlying infrastructure, the future of APIs and microservices looks bright.

References:

• "A Brief History of Microservices" by Keith D. Foote

• "The Future of APIs: 7 Trends You Need to Know" by Linus Håkansson

• "Why Amazon, Netflix, and Uber Prefer Microservices over Monoliths" by Nigel Pereira

• "Google Announces ChatGPT Rival Bard, With Wider Availability in 'Coming Weeks'" by James Vincent

• "Best Practices in API Governance" by Janet Wagner

• "APIs Impact on DevOps: Exploring APIs Continuous Evolution," xMatters Blog

Saurabh Dashora, Architect at Progressive Coder
@saurabh.dashora on DZone | saurabh-dashora on LinkedIn

I'm a full stack architect, a tech writer, and guest author in various publications. I have expertise building
distributed systems across multiple business domains such as banking, autonomous driving, and retail.
Throughout my career, I have worked at several large organizations. I also run a tech blog on cloud,

microservices, and web development where I have written hundreds of articles. Apart from work, I enjoy reading books and
playing video games.

https://www.gravitee.io/blog/the-future-of-apis-7-trends
https://www.gravitee.io/blog/the-future-of-apis-7-trends
https://swagger.io/resources/articles/best-practices-in-api-governance/
https://www.openapis.org/
https://www.theverge.com/2023/2/6/23588033/google-chatgpt-rival-bard-testing-rollout-features
https://www.xmatters.com/blog/apis-impact-on-devops-exploring-apis-continuous-evolution/
https://www.dataversity.net/a-brief-history-of-microservices/
https://www.gravitee.io/blog/the-future-of-apis-7-trends
https://www.sify.com/digital-transformation/why-amazon-netflix-and-uber-prefermicroservices-over-monoliths/
https://www.theverge.com/2023/2/6/23588033/google-chatgpt-rival-bard-testing-rollout-features
https://swagger.io/resources/articles/best-practices-in-api-governance/
https://www.xmatters.com/blog/apis-impact-on-devops-exploring-apis-continuous-evolution/
https://dzone.com/users/3576974/saurabhdashora.html
https://www.linkedin.com/in/saurabh-dashora/

Why Composable? How We Do It?

Agile delivery and faster time
to market with modular MACH
architecture

De-coupled MACH-based architecture with a
focus on product experience manager

Build your preferred
multi-vendor commerce solution

Create the solutions you need with opinionated
and elegant APIs

Keep up with business
team feature requirements

Accelerate frontend builds with pre-integrated
NextJS framework

Innovate and make
changes with speed

Simplified multi-vendor design and orchestration
with no-code and low-code integrations

Reduce TCO and
operational costs

Reduce cloudops resources with solution hosting,
management and monitoring included

Start Free Trial

https://www.elasticpath.com/free-trial?utm_source=dzone&utm_medium=research-report&utm_campaign=23q2-standard-prospect-all-global-dev&utm_content=full-page-ad

PAGE 20TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

PARTNER CASE STUDY

Paro is a growth platform bringing businesses and expert finance and
accounting professionals together through AI technology and acute
industry knowledge. Paro's community of professionals provides a range of
services to clients, from bookkeeping and accounting to highly specialized
corporate development and strategic advisory.

Challenge
Paro initially sought to launch a portal for their freelance experts to self-
serve transactions surrounding placement and financial services. The initial
launch served as a test toward addressing more complexities within their
product offerings as their talent pool, and subsequently their menu of
services, expands.

Given the limited resources of their engineering team and the fast-paced
nature of the startup, Paro was looking for a solution with ease of use and a
quick time to market.

Solution
Paro's e-commerce portal demanded:

• Flexibility

• Agility

• Ease of implementation

• Ability to scale at speed

Elastic Path's API-first, headless architecture played a critical role in
providing the flexibility to innovate rapidly. Paro believes microservices are
the future of e-commerce's fast-paced evolution. They pointed to Elastic
Path Product Experience Manager (EP PXM), which combines re-imagined
commerce PIM, product merchandising, and catalog composer capabilities
in one central place.

These features empowered Paro's team to quickly create thousands
of variations, support configurable product types, and power dynamic
bundles such as service packages.

Results
This new capability will significantly impact Paro's ability to scale their
products and services without additional lift to their existing teams. What
lies ahead for Paro is a focus on conversion and the growth of services
afforded by EP PXM.

COMPANY
Paro

COMPANY SIZE
150+ employees

INDUSTRY
Professional Services

PRODUCTS USED
Elastic Path Commerce Cloud

PRIMARY OUTCOME
Paro successfully launched
their e-commerce portal in five
months and leveraged Elastic Path
technology partners — Algolia for
search functionality and Stripe for
payment processing.

"With Elastic Path, we could focus on
scaling, future-proofing, and ultimately
providing the experience we wanted for
our customers."

— Kody Myers,
Director of Product, Paro

CREATED IN PARTNERSHIP WITH

Case Study: Paro
Paro Implements Elastic Path to Launch Self-Service Portal

PAGE 21TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

CONTRIBUTOR INSIGHTS

As organizations look to enable integration, innovation, and digital experiences through their IT teams, they often build APIs
and expose them by leveraging a full-lifecycle API management system. Historically, these API management systems provided
tooling such as:

• Defining an API (e.g., Swagger, OpenAPI Spec, RAML)

• API testing

• API scaffolding and implementation

• Specifications for quota and usage policies/plans

• Documentation

• An API portal

These API management systems were often delivered as a fully integrated stack with a fancy UI, role-based access control, and
push-button mechanisms to accomplish the lifecycle management functions.

While this all sounds very nice, there are some realities we face as organizations look to modernize their application and
API delivery engines. An API management platform does not exist in a vacuum. DevOps philosophies have influenced
organizational structures, automation, and self-service. Any API management system must fit within a modern development
environment that is often multi-language, multi-platform, and multi-cloud. This infrastructure must also fit natively with Git-
based deployment workflows (GitOps), including systems built for CI/CD.

Avoid Yet Another Silo (YAS)
Although developer productivity can be difficult to measure, proxy metrics that can be useful include things like the following:

• Lead time to make code changes in production

• Number of deployments to production per week

Traditionally, developers write code, create services, build APIs, and then hand them off to operations to deploy and operate
those services and APIs. The silos between development, infrastructure, security, and network teams often leads to complex
synchronization points, handoffs, and a lot of waiting. This slows down code changes and deployments to production.

Figure 1: Siloed handoffs between teams cause a slowdown in delivery to production

Full Lifecycle API
Management Is Dead
Build APIs Following Your Software Development
Lifecycle With an Internal Developer Platform

By Christian Posta, VP and Global Field CTO at Solo.io

PAGE 22TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

Large monolithic software systems can further this problem by forcing their own silos within each of the organizational silos.
They have their own proprietary UIs, require specialized skills or privilege to operate, and are often owned by specific teams. If
you need something from the large monolithic software system, you typically need to open a ticket to signal to the team who
owns the system that they need to make a change.

In practice, traditional full lifecycle API management systems create silos by forcing users into an all-or-nothing set of tools
for defining, implementing, testing, and exposing APIs even if these differ from what a development team wants to use.
These systems are very difficult to automate and integrate with other parts of the software delivery systems, and they are
usually guarded by some API management team that is responsible for configuring and deploying APIs. This centralization
from both a technology and organizational standpoint creates bottlenecks that slow down delivery in a modern DevOps-
minded organization.

Favor Automation Over Point-and-Click UIs
Most traditional full lifecycle API management systems do have some role-centric capabilities, like role-based UIs and tools
for specific personas. One principle prevalent in modern DevOps implementations is around eliminating manual or repetitive
tasks using automation. We cannot expect users to log into a system that runs tests, a totally different system to manage APIs,
and yet another system to do a deployment.

Figure 2: We should reduce multiple, manual, point-and-click UIs in favor of automation

Ideally, we would automate a lot of these steps so a developer can go to a single self-service UI for anything related to software
development and deployment. Any functionality we would like, including traditional API management and each of its "full
lifecycle" functionalities, should be automatable. With a lot of the functionality in modern API management locked into
proprietary UIs, automation is often very challenging and brittle, if accomplished at all.

The API Lifecycle Is The Software Development Lifecycle
The API lifecycle is often centered around design, implementation, testing, control, and consumption. Does this sound familiar?
It should — because it's exactly what we do with any software we write. When developers create APIs, they use software to do
so. The API lifecycle is the software development lifecycle. Trying to treat the lifecycle of APIs differently from the rest of our
software development practices creates inconsistencies, fragmentation, and friction.

For example, when we create an API, we may need to develop it, test it, and will probably eventually need to notify users when
we need to retire it. We need the same capabilities for internal services, libraries, and other system components. Although
there may be some slight differences, should these be separate and different processes? Should these be completely different
sets of tools? Trying to duplicate what is already necessary for the software development lifecycle with substandard and
proprietary tools specific for API management causes adoption, governance, and bifurcation issues.

Use an Internal Developer Platform
As organizations attempt to improve developer productivity by shifting left and giving developers more responsibility and
control over building and running their services and APIs, we've seen an emergence in platform teams responsible for building
workflows and toolchains that enable self-service. These workflows get boiled down to "golden paths" that developers can
easily follow and that automate a lot of the tasks around bootstrapping new projects, documenting their software, enforcing
access/security policies, and controlling deployment rollouts.

PAGE 23TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

This developer-focused self-service platform is known as an Internal Developer Platform (IDP) and aims to cover the operational
necessities of the entire lifecycle of a service. Although many teams have built their own platforms, there are some good open-
source frameworks that go a long way to building an IDP. For example, Backstage is a popular open-source project used to
build IDPs.

Platform engineering teams typically have a lot of flexibility picking the best of breed tools for developers that support multiple
types of languages and developer frameworks. Plus, these tools can be composed through automation and don't rely on
proprietary vendor UIs. Platform engineering teams also typically build their platform around container technology that can be
used across multiple clusters and stretch into on-premises deployments as well as the public cloud. These IDPs insulate from
vendor lock-in whether that's a particular public cloud or vendor.

For example, here's a very common scenario that I've run into numerous times: An organization bought into a full-lifecycle
API management vendor and finds itself in a situation where their modernization efforts are centered around containers and
Kubernetes, GitOps, and CI/CD. They find the API management vendor may have strong tools around API design; however,
runtime execution, the API portal, and analytics features are lagging, outdated, or cannot be automated with the rest of the
container platform via GitOps. They often wish to use a different API gateway technology based on more modern open-source
proxies like Envoy Proxy but are locked into a tightly integrated yet outdated gateway technology with their current vendor.

Instead, these organizations should opt to use newer proxy technologies, select more developer-friendly API testing tools, tie
API analytics into their existing streaming and analytics efforts, and rely on tools like Backstage to tie all of this together. Doing
so, they would reduce silos centered around vendor products, leverage best-of-breed tools, and automate these tools in a way
that preserves governance and prescribed guard rails. These platforms can then support complex deployment strategies like
multi-cluster, hybrid, and multi-cloud deployments.

Conclusion
Managing APIs will continue to be an important aspect of software development, but it doesn't happen in a vacuum. Large
monolithic full lifecycle API management stacks are outdated, don't fit in with modern development practices, and cause
silos when we are trying to break down silos. Choosing the best-of-bread tools for API development and policy management
allows us to build a powerful software development platform (an IDP) that improves developer productivity, reduces lock-in,
and allows organizations to deploy APIs and services across containers and cloud-infrastructure whether on-premises or any
public cloud.

Christian Posta, VP, Global Field CTO at Solo.io
@christian.posta on DZone | @ceposta on LinkedIn | @christianposta on Twitter | blog.christianposta.com

Christian Posta is the author of Istio in Action and many other books on cloud-native architecture. He is
well known as a speaker, blogger, and contributor to various open-source projects in the service mesh
and cloud-native ecosystem. Christian has spent time at government and commercial enterprises

and web-scale companies. He now helps organizations create and deploy large-scale, cloud-native, resilient, distributed
architectures. He enjoys mentoring, training, and leading teams to be successful with distributed systems concepts,
microservices, DevOps, and cloud-native app design.

https://backstage.io/
https://www.envoyproxy.io/
https://dzone.com/users/436713/christian.posta.html
https://www.linkedin.com/in/ceposta/
https://twitter.com/christianposta
https://blog.christianposta.com/

PAGE 24TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

CONTRIBUTOR INSIGHTS

A microservices architecture is an established pattern for building a complex system that consists of loosely coupled modules.
It is one of the most talked-about software architecture trends in the last few years. It seems to be a surprisingly simple idea to
break a large, interdependent system into many small, lightweight modules that can make software management easier.

Here's the catch: After you have broken down your monolith application into small modules, how are you supposed to connect
them together in a meaningful way? Unfortunately, there is no single right answer to this question, but as is so often the case,
there are a few approaches that depend on the application and the individual use case.

Two common protocols used in microservices are HTTP request/response with resource APIs and lightweight asynchronous
messaging when communicating updates across several microservices. Let's explore these protocols.

Types of Communication
Microservices can communicate through many different modes of communication, each one targeting a different use
case. These types of communications can be primarily classified in two dimensions. The first dimension defines if the
communication protocol is synchronous or asynchronous:

Table 1

SYNCHRONOUS vs. ASYNCHRONOUS COMMUNICATION

Synchronous Asynchronous

Communication
pattern

The client sends a request and waits for a response
from the server.

Communication is not in sync, which means it does not
happen in real time.

Protocols HTTP/HTTPS AMQP, MQTT

Coupling The client code can only continue its task further
when it receives the server response.

In the context of distributed messaging, coupling implies that
request processing will occur at an arbitrary point in time.

Failure isolation It requires the downstream server to be available or
the request fails.

If the consumer fails, the sender can still send messages. The
messages will be picked up when the consumer recovers.

The second dimension defines if the communication has a single receiver or multiple receivers:

Table 2

COMMUNICATION VIA SINGLE vs. MULTIPLE RECEIVERS

Single Receiver Multiple Receivers

Communication
pattern

It implies that there is point-to-point communication
that delivers a message to exactly one consumer that
is reading from the channel, and that the message is
processed only once.

Communication from the sender is available to
multiple receivers.

Example It is well suited for sending asynchronous commands
from one microservice to another.

The publish/subscribe mechanism is where a publisher
publishes a message to a channel and the channel can be
subscribed by multiple subscribers/receivers to receive the
message asynchronously.

REST vs. Messaging for
Microservices
Choosing the Right Communication Style for Your Microservices

By Swathi Prasad, Software Architect at Syneco Trading GmbH

PAGE 25TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

The most common type of communication between microservices is single-receiver communication with a synchronous
protocol like HTTP/HTTPS when invoking a REST API. Microservices typically use messaging protocols for asynchronous
communication between microservices. This asynchronous communication may involve a single receiver or multiple receivers
depending on the application's needs.

Representational State Transfer
Representational state transfer (REST) is a popular architectural style for request and response communication, and it can serve
as a good example for the synchronous communication type. This is based on the HTTP protocol, embracing verbs such as GET,
POST, PUT, DELETE, etc. In this communication pattern, the caller waits for a response from the server.

Figure 1: REST API-based communication

REST is the most commonly used architectural style for communication between services, but heavy reliance on this type of
communication has some negative consequences when it comes to a microservices architecture:

1. Multiple round trips (latency) – The client often needs to execute multiple trips to the server to fetch all the data the
client requires. Each endpoint specifies a fixed amount of data, and in many cases, that data is only a subset of what a
client needs to populate their page.

2. Blocking – When invoking a REST API, the client is blocked and is waiting for a server response. This may hurt application
performance if the application thread is processing other concurrent requests.

3. Tight coupling – The client and server need to know about each other. It increases complexity over time and reduces
portability.

Messaging
Messaging is widely used in a microservices architecture, which follows the asynchronous protocol. In this pattern, a service
sends a message without waiting for a response, and one or more services process the message asynchronously. Asynchronous
messaging provides many benefits but also brings challenges such as idempotency, message ordering, poison message
handling, and complexity of message broker, which must be highly available.

It is important to note the difference between asynchronous I/O and the asynchronous protocol. Asynchronous I/O means
that the calling thread is not blocked while the I/O operations are executed. This is an implementation detail in terms of the
software design. The asynchronous protocol means the sender does not wait for a response.

Figure 2: Messaging-based communication

PAGE 26TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

Asynchronous messaging has some advantages over synchronous messaging:

1. Loose coupling – The message producer does not need to know about the consumer(s).

2. Multiple subscribers – Using a publisher/subscriber (pub/sub) model, multiple consumers can subscribe to
receive events.

3. Resiliency or failure isolation – If the consumer fails, the producer can still send messages. The messages will
be picked up when the consumer recovers from failure. This is especially useful in a microservices architecture
because each microservice has its own lifecycle.

4. Non-blocking – The producers and consumers can send and process messages at their own pace.

Though asynchronous messaging has many advantages, it comes with some tradeoffs:

1. Tight coupling with the messaging infrastructure – Using a particular vendor/messaging infrastructure may
cause tight coupling with that infrastructure. It may become difficult to switch to another vendor/messaging
infrastructure later.

2. Complexity – Handling asynchronous messaging may not be as easy as designing a REST API. Duplicate messages
must be handled by de-duplicating or making the operations idempotent. It is hard to implement request-response
semantics using asynchronous messaging. To send a response, another queue and a way to correlate request
and response messages are both needed. Debugging can also be difficult as it is hard to identify which request in
Service A caused the wrong behavior in Service B.

Asynchronous messaging has matured into a number of messaging patterns. These patterns apply to scenarios when several
parts of a distributed system must communicate with one another in a dependable and scalable way. Let's take a look at some
of these patterns.

PUB/SUB PATTERN
The pub/sub pattern implies that a publisher sends a message to a channel on a message broker. One or more subscribers
subscribe to the channel and receive messages from the channel in an asynchronous manner. This pattern is useful when a
microservice needs to broadcast information to a significant number of consumers.

Figure 3: Pub/sub pattern

The pub/sub pattern has the following advantages:

• It decouples publishers and subscribers that need to communicate. Publishers and subscribers can be managed
independently, and messages can be managed even if one or more subscribers are offline.

• It increases scalability and improves responsiveness of the publisher. The publisher can quickly publish a message to the
input channel, then return to its core processing responsibilities. The messaging infrastructure is responsible for ensuring
messages are delivered to interested subscribers.

• It provides separation of concerns for microservices. Each microservice can focus on its core responsibilities, while the
message broker handles everything required to reliably route messages to multiple subscribers.

PAGE 27TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

There are a few disadvantages of using this pattern:

• The pub/sub pattern introduces high semantic coupling in the messages passed by the publishers to the
subscribers. Once the structure of the data is established, it is often difficult to change. To change the message
structure, all subscribers must be altered to accept the changed format. This can be difficult or impossible if the
subscribers are external.

• Another drawback of the pub/sub pattern is that it is difficult to gauge the health of subscribers. The publisher does
not have knowledge of the health status of the systems listening to the messages.

• As a pub/sub system scales, the broker often becomes a bottleneck for message flow. Load surges can slow down the
pub/sub system, and subscribers can get a spike in response time.

QUEUE-BASED PATTERN
In the queue-based pattern, a sender posts a message to a queue containing the data required by the receiver. The queue
acts as a buffer, storing the message until it is retrieved by the receiver. The receiver retrieves messages from the queue and
processes them at its own pace. This pattern is useful for any application that uses services that are subject to overloading.

Figure 4: Queue-based pattern

The queue-based pattern has the following advantages:

• It can help maximize scalability because both the number of queues and the number of services can be scaled
to meet demand.

• It can help maximize availability. Delays arising in the producer or consumer won't have an immediate or direct
impact on the services, which can continue to post messages to the queue even when the consumer isn't
available or is under heavy load to process messages.

There are some disadvantages of using this pattern:

• When a consumer receives a message from the queue, the message is no longer available in the queue. If a
consumer fails to process the message, the message is lost and may need a rollback in the consumer.

• Message queues do not come out of the box. We need to create, configure, and monitor them. It can cause
operational complexity when systems are scaled up.

KEYS TO STREAMLINED MESSAGING INFRASTRUCTURE
Asynchronous communication is usually managed through a message broker. There are some factors to consider when
choosing the right messaging infrastructure for asynchronous communication:

• Scalability – the ability to scale automatically when there is a load surge on the message broker

• Data persistency – the ability to recover messages in case of reboot/failure

• Consumer capability – whether the broker can manage one-to-one and/or one-to-many consumers

• Monitoring – whether monitoring capabilities are available

• Push and pull queue – the ability to handle push and pull delivery by message queues

• Security – proper authentication and authorization for messaging queues and topics

• Automatic failover – the ability to connect to a failover broker automatically when one broker fails without
impacting publisher/consumer

Conclusion
More and more, microservices are becoming the de facto approach for designing scalable and resilient systems. There is no
single approach for all communications between microservices. While RESTful APIs provide a request-response model to
communicate between services, asynchronous messaging offers a more scalable producer-consumer relationship between

PAGE 28TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

different services. And although microservices can communicate with each other via both messaging and REST APIs,
messaging architectures are ideal for improving agility and moving quickly. They are commonly found in modern applications
that use microservices or any application that has decoupled components.

When it comes to choosing a right style of communication for your microservices, be sure to match the needs of the consumer
with one or more communication types to offer a robust interface for your services.

Swathi Prasad, Software Architect at Syneco Trading GmbH
@swathiprasad88 on DZone | @swathisprasad on LinkedIn

Swathi Prasad has 13 years of experience in the IT industry. She is experienced in the full software
development lifecycle. She also enjoys teaching backend development at a non-profit school in Munich.
Outside of work, Swathi spends time reading, writing, and hiking.

https://dzone.com/users/2967870/swathiprasad88.html
https://www.linkedin.com/in/swathisprasad/

PAGE 29TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

CONTRIBUTOR INSIGHTS

Our approach to scalability has gone through a tectonic shift over the past decade. Technologies that were staples in every
enterprise back end (e.g., IIOP) have vanished completely with a shift to approaches such as eventual consistency. This shift
introduced some complexities with the benefit of greater scalability. The rise of Kubernetes and serverless further cemented
this approach: spinning a new container is cheap, turning scalability into a relatively simple problem. Orchestration changed
our approach to scalability and facilitated the growth of microservices and observability, two key tools in modern scaling.

Horizontal to Vertical Scaling
The rise of Kubernetes correlates with the microservices trend as seen in Figure 1. Kubernetes heavily emphasizes horizontal
scaling in which replications of servers provide scaling as opposed to vertical scaling in which we derive performance and
throughput from a single host (many machines vs. few powerful machines).

Data source: Google Trends (https://www.google.com/trends)

Figure 1: Google Trends chart showing correlation between Kubernetes and microservices

In order to maximize horizontal scaling, companies focus on the idempotency and statelessness of their services. This is easier
to accomplish with smaller isolated services, but the complexity shifts in two directions:

• Ops – Managing the complex relations between multiple disconnected services.

• Dev – Quality, uniformity, and consistency become an issue.

Complexity doesn't go away because of a switch to horizontal scaling. It shifts to a distinct form handled by a different team,
such as network complexity instead of object graph complexity. The consensus of starting with a monolith isn't just about the
ease of programming. Horizontal scaling is deceptively simple thanks to Kubernetes and serverless. However, this masks a level
of complexity that is often harder to gauge for smaller projects. Scaling is a process, not a single operation; processes take time
and require a team.

Assessment of Scalability
Constraints (and Solutions)
Practical Advice for Overcoming Scalability Challenges

By Shai Almog, CEO at Codename One

https://dzone.com/articles/eventual-consistency-the-hinted-handoff-queue
https://trends.google.com/home

PAGE 30TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

A good analogy is physical traffic: we often reach a slow junction and wonder why the city didn't build an overpass. The reason
could be that this will ease the jam in the current junction, but it might create a much bigger traffic jam down the road. The
same is true for scaling a system — all of our planning might make matters worse, meaning that a faster server can overload a
node in another system. Scalability is not performance!

SCALABILITY vs. PERFORMANCE
Scalability and performance can be closely related, in which case improving one can also improve the other. However, in other
cases, there may be trade-offs between scalability and performance. For example, a system optimized for performance may be
less scalable because it may require more resources to handle additional users or requests. Meanwhile, a system optimized for
scalability may sacrifice some performance to ensure that it can handle a growing workload.

To strike a balance between scalability and performance, it's essential to understand the requirements of the system and the
expected workload. For example, if we expect a system to have a few users, performance may be more critical than scalability.
However, if we expect a rapidly growing user base, scalability may be more important than performance. We see this expressed
perfectly with the trend towards horizontal scaling. Modern Kubernetes systems usually focus on many small VM images with
a limited number of cores as opposed to powerful machines/VMs. A system focused on performance would deliver better
performance using few high-performance machines.

CHALLENGES OF HORIZONTAL SCALE
Horizontal scaling brought with it a unique level of problems that birthed new fields in our industry: platform engineers and
SREs are prime examples. The complexity of maintaining a system with thousands of concurrent server processes is fantastic.
Such a scale makes it much harder to debug and isolate issues. The asynchronous nature of these systems exacerbates this
problem. Eventual consistency creates situations we can't realistically replicate locally, as we see in Figure 2. When a change
needs to occur on multiple microservices, they create an inconsistent state, which can lead to invalid states.

Figure 2: Inconsistent state may exist between wide sweeping changes

Typical solutions used for debugging dozens of instances don't apply when we have thousands of instances running
concurrently. Failure is inevitable, and at these scales, it usually amounts to restarting an instance. On the surface, orchestration
solved the problem, but the overhead and resulting edge cases make fixing such problems even harder.

Strategies for Success
We can answer such challenges with a combination of approaches and tools. There is no "one size fits all," and it is important
to practice agility when dealing with scaling issues. We need to measure the impact of every decision and tool, then form
decisions based on the results.

Observability serves a crucial role in measuring success. In the world of microservices, there's no way to measure the success
of scaling without such tooling. Observability tools also serve as a benchmark to pinpoint scalability bottlenecks, as we will
cover soon enough.

VERTICALLY INTEGRATED TEAMS
Over the years, developers tended to silo themselves based on expertise, and as a result, we formed teams to suit these
processes. This is problematic. An engineer making a decision that might affect resource consumption or might impact such a
tradeoff needs to be educated about the production environment.

PAGE 31TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

When building a small system, we can afford to ignore such issues. Although as scale grows, we need to have a heterogeneous
team that can advise on such matters. By assembling a full-stack team that is feature-driven and small, the team can handle
all the different tasks required. However, this isn't a balanced team. Typically, a DevOps engineer will work with multiple teams
simply because there are far more developers than DevOps.

This is logistically challenging, but the division of work makes more sense in this way. As a particular microservice fails,
responsibilities are clear, and the team can respond swiftly.

FAIL-FAST
One of the biggest pitfalls to scalability is the fail-safe approach. Code might fail subtly and run in non-optimal form. A good
example is code that tries to read a response from a website. In a case of failure, we might return cached data to facilitate a fail-
safe strategy. However, since the delay happens, we still wait for the response. It seems like everything is working correctly with
the cache, but the performance is still at the timeout boundaries.

This delays the processing. With asynchronous code, this is hard to notice and doesn't put an immediate toll on the system.
Thus, such issues can go unnoticed. A request might succeed in the testing and staging environment, but it might always fall
back to the fail-safe process in production.

Failing fast includes several advantages for these scenarios:

• It makes bugs easier to spot in the testing phase. Failure is relatively easy to test as opposed to durability.

• A failure will trigger fallback behavior faster and prevent a cascading effect.

• Problems are easier to fix as they are usually in the same isolated area as the failure.

API GATEWAY AND CACHING
Internal APIs can leverage an API gateway to provide smart load balancing, caching, and rate limiting. Typically, caching is
the most universal performance tip one can give. But when it comes to scale, failing fast might be even more important.
In typical cases of heavy load, the division of users is stark. By limiting the heaviest users, we can dramatically shift the load
on the system. Distributed caching is one of the hardest problems in programming. Implementing a caching policy over
microservices is impractical; we need to cache an individual service and use the API gateway to alleviate some of the overhead.

Level 2 caching is used to store database data in RAM and avoid DB access. This is often a major performance benefit that tips
the scales, but sometimes it doesn't have an impact at all. Stack Overflow recently discovered that database caching had no
impact on their architecture, and this was because higher-level caches filled in the gaps and grabbed all the cache hits at the
web layer. By the time a call reached the database layer, it was clear this data wasn't in cache. Thus, they always missed the
cache, and it had no impact. Only overhead.

This is where caching in the API gateway layer becomes immensely helpful. This is a system we can manage centrally and
control, unlike the caching in an individual service that might get polluted.

OBSERVABILITY
What we can't see, we can't fix or improve. Without a proper observability stack, we are blind to scaling problems and to the
appropriate fixes. When discussing observability, we often make the mistake of focusing on tools. Observability isn't about tools
— it's about questions and answers.

When developing an observability stack, we need to understand the types of questions we will have for it and then provide
two means to answer each question. It is important to have two means. Observability is often unreliable and misleading, so we
need a way to verify its results. However, if we have more than two ways, it might mean we over-observe a system, which can
have a serious impact on costs.

A typical exercise to verify an observability stack is to hypothesize common problems and then find two ways to solve them. For
example, a performance problem in microservice X:

• Inspect the logs of the microservice for errors or latency — this might require adding a specific log for coverage.

• Inspect Prometheus metrics for the service.

Tracking a scalability issue within a microservices deployment is much easier when working with traces. They provide a context
and a scale. When an edge service runs into an N+1 query bug, traces show that almost immediately when they're properly
integrated throughout.

PAGE 32TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

SEGREGATION
One of the most important scalability approaches is the separation of high-volume data. Modern business tools save
tremendous amounts of meta-data for every operation. Most of this data isn't applicable for the day-to-day operations of the
application. It is meta-data meant for business intelligence, monitoring, and accountability. We can stream this data to remove
the immediate need to process it. We can store such data in a separate time-series database to alleviate the scaling challenges
from the current database.

Conclusion
Scaling in the age of serverless and microservices is a very different process than it was a mere decade ago. Controlling costs
has become far harder, especially with observability costs which in the case of logs often exceed 30 percent of the total cloud
bill. The good news is that we have many new tools at our disposal — including API gateways, observability, and much more.

By leveraging these tools with a fail-fast strategy and tight observability, we can iteratively scale the deployment. This is key, as
scaling is a process, not a single action. Tools can only go so far and often we can overuse them. In order to grow, we need to
review and even eliminate unnecessary optimizations if they are not applicable.

Shai Almog, CEO at Codename One
@sa74997 on DZone | @shai-almog-81a42 on LinkedIn | @debugagent on YouTube and Twitter | debugagent.com

Shai is the author of Practical Debugging at Scale: Cloud Native Debugging in Kubernetes and
Production (Apress). He is an entrepreneur, author, blogger, open-source hacker, speaker, Java rockstar,
developer advocate, and more. As an ex-Sun/Oracle dev with 30+ years of experience, Shai has built JVMs,

tools, mobile, startups/enterprise back ends, UIs, frameworks, observability tools, and more.

https://dzone.com/users/308/sa74997.html
https://www.linkedin.com/in/shai-almog-81a42/
https://www.youtube.com/@debugagent
https://twitter.com/debugagent
https://debugagent.com/

PAGE 33TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

CONTRIBUTOR INSIGHTS

Designing an application architecture is never complete. Regularly, all decisions and components need to be reviewed,
validated, and possibly updated. Stakeholders require that complex applications be delivered more quickly. It's a challenge for
even the most senior technologists. A strategy is required, and it needs to be nimble. Strategy combines processes, which aid
in keeping a team focused, and principles and patterns, which provide best practices for implementation. Regardless, it's a
daunting task requiring organizational commitment.

Development, Design, and Architectural Processes
Applications developed without any process is chaos. A team that invents their own process and sticks to it is much better
off than a team using no process. At the same time, holding a project hostage to a process can be just as detrimental. Best
practices and patterns are developed over multiple years of teams looking for better ways to produce quality software in a
timely manner. Processes are the codification of the best practices and patterns. By codifying best practices and patterns into
processes, the processes can be scaled out to more organizations and teams.

For example, when an organization selects a development process, a senior leader may ascribe to a test-first development
pattern. It becomes much easier for an organization to adopt a pattern by finding a process that outlines how the pattern
is organizationally implemented. In the case of the test-first development pattern, test-driven development (TDD) may be
selected as the development process.

Another technical leader in the same organization may choose to lead their team using domain-driven design (DDD), a
pattern by which software design is communicated across technical teams as well as other stakeholders. Can these two design
philosophies coexist? Yes. They can. Here, TDD defines how software is constructed while DDD defines the concepts that
describe the software.

Software architecture works to remain neutral to specific development and design processes, and it is the specification on how
an abstract pattern is implemented. The term, "abstract pattern," is used as most software architecture patterns can be applied
across any development process and across any tech stack. For example, many architectures employ the use of inversion of
control (or dependency injection). How Java, JavaScript, C#, etc. implement inversion of control is specific to the tech stack, but
it accomplishes the same goal.

AVOIDING DOGMATIC ADHERENCE
Regardless of development, design, or architectural process, it's key that strict adherence to a given process does not become
the end goal. Unfortunately, this happens more often than it should. Remember that the intent of a process is to codify best
practices in a way that allows teams to scale using the same goals and objectives.

To that end, when implementing processes, here are some points to consider:

• There's no one size fits all.

• Allow culture to mold the process.

• Maturity takes time.

• Keep focused on what you're really doing — building quality software in a timely manner.

Cross-Cutting Concerns
Software architecture can be designed, articulated, and implemented in several ways. Regardless of approach, most software
architecture plans address two key points: simplicity and evolution. Simplicity is a relative term in that an architectural
approach needs to be easily understood within the context of the business domain. Team members should look at an

Application Architecture
Design Principles
A Coordinated, Cross-Cutting Approach

By Ray Elenteny, Solution Architect at SOLTECH, Inc.

PAGE 34TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

architectural plan and say, "Of course, that's the obvious design." It may have taken several months to develop the plan, but
a team responding in this manner is a sign that the plan is on the right track. Evolution is very important and can be the
trickiest aspect of an architectural plan. It may sound difficult, but an architectural plan should be able to last ten-plus years.
That may be challenging to comprehend, but with the right design principles and patterns in place, it's not as challenging as
one might think.

At its core, good software architecture does its best to not paint itself into a corner. Figure 1 below contains no new revelations.
However, each point is critical to a lasting software architecture:

• Building architecture that endures. This is the end goal. It entails using patterns that support the remaining points.

• Multiple platform and deployment support. The key here is that what exists today will very likely look different five years
from now. An application needs to be readily able to adapt to changes in platform and deployment models, wherever the
future takes it.

• Enforceable, standard patterns and compliance. Not that there's nothing new, but the software industry has decades of
patterns to adopt and compliance initiatives to adhere to. Changes in both are gradual, so keeping an eye on the horizon
is important.

• Reuse and extensibility from the ground up. Implementation patterns for reuse and extensibility will vary, but these
points have been building blocks for many years.

• Collaboration with independent, external modules. The era of microservices helps enforce this principle. Watch for
integrations that get convoluted. That is a red flag to the architecture.

• Evolutionary, module compatibility and upgrade paths. Everything in a software's architecture will evolve. Consider
how compatibility and upgrades are managed.

• Design for obsolescence. Understand that many components within a software's architecture will eventually need to be
totally replaced. At the beginning of each project or milestone, ask the question, "How much code are we getting rid of
this release?" The effect of regular code pruning is no different than the effect of pruning plants.

Figure 1: Key architectural principles

Developing microservices is a combination of following these key architectural principles along with segmenting components
into areas of responsibility. Microservices provide a unit of business functionality. Alone, they provide little value to a business.
It's in the assembly of and integration with other microservices that business value is realized.

Good microservices assembly and integration implementations follow a multi-layered approach.

HORIZONTAL AND VERTICAL SLICES
Simply stated, slicing an application is about keeping things where they belong. In addition to adhering to relevant design
patterns in a codebase, slicing an application applies the same patterns at the application level. Consider an application
architecture as depicted by a Lego® brick structure in the figure below:

SEE FIGURE 2 ON NEXT PAGE

PAGE 35TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

Figure 2: Microservices architecture

Each section of bricks is separated by that thin Lego® brick, indicating a strict separation of responsibility between each layer.
Layers interact only through provided contracts/interfaces. Figure 2 depicts three layers with each having a distinct purpose.
Whether it be integration with devices such as a laptop or tablet, or microservices integrating with other microservices, the
point at which service requests are received remains logically the same. Here, there are several entry points ranging from web
services and messaging services to an event bus.

HORIZONTAL SLICES
Horizontal slices of an application architecture are layers where, starting from the bottom, each layer provides services to the
next layer. Typically, each layer of the stack refines the scope of underlying services to meet business use case logic. There can
be no assumptions by services in lower layers on how above services interact with them. As mentioned, this is done with well-
defined contracts.

In addition, services within a layer interact with one another through that layer's contracts. Maintaining strict adherence to
contracts allows components at each layer to be replaced with new or enhanced versions with no disruption in interoperability.

Figure 3: Horizontal slices

VERTICAL SLICES
Vertical slices are where everything comes together. A vertical slice is what delivers an application business objective. A vertical
slice starts with an entry point that drills through the entire architecture. As depicted in Figure 4, business services can be
exposed in multiple ways. Entry points are commonly exposed through some type of network protocol.

However, there are cases where a network protocol doesn't suffice. In these cases, a business service may offer a native library
supporting direct integration. Regardless of the use case, strict adherence to contracts must be maintained.

SEE FIGURE 4 ON NEXT PAGE

PAGE 36TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

Figure 4: Vertical slices

Obvious, Yet Challenging
Microservices have become a predominant pattern by which large applications are assembled. Each microservice is concerned
with a very specific set of functionalities. By their very nature, microservices dictate that well-defined contracts are in place,
with which other microservices and systems can integrate. Microservices that are designed and implemented for cloud-native
deployments can leverage cloud-native infrastructure to support several of the patterns discussed.

The patterns and diagrams presented here will look obvious to most. As mentioned, good architecture is "obvious." The
challenge is adhering to it. Often, the biggest enemy to adherence is time. The pressure to meet delivery deadlines is real and
where cracks in the contracts appear. Given the multiple factors in play, there are times when compromises need to be made.
Make a note, create a ticket, add a comment, and leave a trail so that the compromise gets addressed as quickly as possible.

Well-designed application architecture married with good processes supports longevity, which from a business perspective
provides an excellent return on investment. Greenfield opportunities are fewer than evolving existing applications. Regardless,
bringing this all to bear can look intimidating. The key is to start somewhere. As a team, develop a plan and "make it so"!

Ray Elenteny, Solution Architect at SOLTECH, Inc.
@rbetae on DZone | @ray-elenteny on LinkedIn

With over 35 years of experience in the IT industry, Ray thoroughly enjoys sharing his experience by
helping organizations deliver high-quality applications that drive business value. Ray has a passion for
software engineering. Over the past 10 years or so, Ray has taken a keen interest in the cultural and

technical dynamics of efficiently delivering applications.

https://dzone.com/users/1070157/rbetae.html
https://www.linkedin.com/in/ray-elenteny/

PAGE 37TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

CONTRIBUTOR INSIGHTS

Multi-cloud integration strategies may sound like buzzwords and marketing slang, but in this article, I will demystify them. I will
also dive deeply into on-premises and legacy systems and how we can integrate with them. Before we jump into the topic, I
would like to define what integration means in a cloud context.

Cloud integration is a process that allows organizations' applications, infrastructure, data, and components to properly work
together within one or several cloud providers. It also includes connecting on-premises data centers to the cloud if migration
can be done across the organization.

Cloud Integrations
An important part of cloud integration is understanding the strategies. Many medium- and enterprise-level companies choose
multi-cloud and hybrid cloud approaches. Why is successful integration important for companies? Most companies building
solutions have to exchange data with on-premises or out-of-support solutions.

Properly designed integration solutions will save a lot of time and money. We can see it in the example of a bank multi-cloud
application at the end of the article.

HYBRID VS. MULTI-CLOUD
Below is a comparison table describing both strategies' pros and cons. Before we jump in, keep the differences between public
and private clouds in mind. Remember that public clouds provide computing power, SaaS, and PaaS services for organizations
that don't have (or where it is difficult to have) their data centers. A private cloud (on-premises) is an infrastructure the
company maintains internally.

Table 1

HYBRID VS. MULTI-CLOUD PROS AND CONS

Hybrid Cloud Multi-Cloud

Description Hybrid clouds combine private clouds/on-prem data centers
with a public cloud, an approach that companies usually take.
For example, banks have secure on-prem environments that
they won't move to the cloud. Meanwhile, they have other,
less secure solutions that can be easily moved to a public
cloud and have fewer connections to on-premises.

Multi-cloud combines several public clouds without using
a private cloud. Usually, companies choose a multi-cloud
strategy to avoid vendor lock-in.

Pros • Flexibility to connect infrastructure that can't be moved to
the public cloud.

• Increased security thanks to the on-prem component.

• Flexibility between using a legacy system and modern
public cloud services.

• Flexible and scalable environments.

• You can choose the services in each cloud that work
best for your company.

• Freedom to implement the solution across
several clouds.

Cons • It can be difficult to maintain legacy, on-prem
environments.

• Additional cost for companies because they need to
maintain their hardware.

• The cost of maintaining different services on several
cloud providers can be prohibitive.

• Complexity in managing and separating different services.

• Securing network communication between clouds can
be difficult.

Demystifying Multi-Cloud
Integration
Comprehensive Strategies and Patterns for Integrating
Cloud Systems

By Boris Zaikin, Senior Software & Cloud Architect at Nordcloud GmbH, an IBM company

PAGE 38TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

Cloud Integration Patterns and Best Practices
Applying a good integration strategy also requires knowing some integration best practices and patterns.

CLOUD INTEGRATION PATTERNS
Understanding the main set of integration patterns is key to using existing integration solutions or designing a new one from
scratch. Also, having the knowledge of these patterns provides a massive benefit during the integration of cloud applications
and enterprise, on-premises infrastructure.

ASYNCHRONOUS MESSAGING
Asynchronous messaging allows components and services to process data without waiting for each other. It also allows
components to be decoupled from each other.

Figure 1

SHARED DATABASES
This pattern uses a shared database to communicate and exchange data between enterprise applications and services. As
part of a shared database and communication bus, we can also use an enterprise service bus that can save and exchange data
between several components.

Figure 2

PAGE 39TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

REMOTE PROCEDURE CALL
Remote procedure call (RPC) is an abstraction layer or protocol that allows one network component to communicate with
another without knowing the whole network's complete functionality.

Figure 3

FILE TRANSFER
The file transfer pattern provides an interface to share files between cloud or application components. For example, file transfer
is useful if an application produces CSV or XML reports — the integration service should adapt this file for other applications.

Figure 4

RECOMMENDED PRACTICES FOR CLOUD INTEGRATION
Here are three of the most important best practices for cloud integration:

1. Use native SaaS tools that cloud providers offer. This approach always provides the best integration options between
applications and components. There are even "no-code" tools for non-technical people. We will get into native Azure,
AWS, and Google Cloud Services in the next section.

2. Use an Integration Platform as a Service (iPaaS). Some services and components provide integration capabilities and
are hosted as cloud services. For example, triggermesh and cenit.io are open-source integration platforms that allow
building event-driven applications in Kubernetes, orchestrating data flow, and providing API management capabilities in
cloud providers and on-premises.

3. Use a Function Platform as Service (FPaaS). These platforms provide huge customization levels of integration options,
from which some organizations can benefit. This approach is intended for cloud solution architects and requires a
knowledge of cloud architecture patterns and function-oriented software development skills. FPaaS tools include AWS
Lambda, Azure Functions, Google Cloud Functions, and Apache OpenWhisk.

https://github.com/triggermesh/triggermesh
https://github.com/cenit-io/cenit
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview
https://cloud.google.com/functions/docs/concepts/overview
https://openwhisk.apache.org/

PAGE 40TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

Common Integration Services
Knowing the general cloud integration best practices and patterns is crucial. However, knowing what exactly each cloud
provider offers is also important. In this section, we will briefly touch upon common cloud integration services from providers
such as AWS, Azure, and Google Cloud. Keep in mind: This section contains — but is not limited to — some of the most
ubiquitous open-source integration services available. To learn more about the list below, common benefits, and drawbacks
associated with each, check out this platform breakdown for more information.

AWS
AWS has several integration services that provide powerful features alongside simplicity. This list includes SNS (Simple
Notification Service), SQS (Simple Queue Service), SWF (Simple Workflow Service), and AWS step functions. To learn more, visit
the AWS Application Integration services page.

GOOGLE CLOUD
Google Cloud has a vast integration ecosystem, also commonly referred to as Integration Platform as a Service (iPaaS). This
provides a set of tools and services to manage and connect applications. The Google Cloud iPaaS contains the following core
services: Integration designer, triggers, and tasks. Learn more about each Google Cloud integration service here.

AZURE
Azure offers an Azure integration service set (also commonly referred to as Azure Integration Platform as a Service). This
contains a variety of services set up to provide strong integration between applications. Some of the most powerful integration
services Azure offers include API Management, Logic Apps, Service Bus, Event Grid, and Azure Arc. If you are interested in
reading more on the various Azure integration services, check out this page to learn more.

A Bank Multi-Cloud Application
As mentioned, banking applications require a massive security layer. Also, many banks contain their own highly secure data
centers, and migrating all secured data to the cloud may not even be an option.

Figure 5: A banking multi-cloud integration application example

https://dzone.com/articles/multi-cloud-integration
https://aws.amazon.com/sns/
https://docs.aws.amazon.com/de_de/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html
https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-welcome.html
https://aws.amazon.com/getting-started/hands-on/create-a-serverless-workflow-step-functions-lambda/
https://aws.amazon.com/products/application-integration/
https://cloud.google.com/application-integration/docs/overview
https://cloud.google.com/application-integration/docs/integrations-ui-layout
https://cloud.google.com/application-integration/docs/trigger-overview
https://cloud.google.com/application-integration/docs/task-overview
https://cloud.google.com/application-integration/docs
https://learn.microsoft.com/en-us/azure/api-management/api-management-key-concepts
https://learn.microsoft.com/en-us/azure/logic-apps/
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-messaging-overview
https://learn.microsoft.com/en-us/azure/event-grid/overview
https://learn.microsoft.com/en-us/azure/azure-arc/kubernetes/overview
https://azure.microsoft.com/en-us/products/category/integration

PAGE 41TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

In this example, we selected Azure as the cloud for the main application. The application is based on a microservices
architecture and is deployed to several Kubernetes clusters. Azure stores secrets, a configuration in a Cosmos DB, and some
files in Blob Storage. Azure also provides an observability platform with a service mesh. All secured data is stored on the on-
premises data center, and the AWS Cloud part contains a workflow for the call center.

Conclusion
In this article, we've reviewed top cloud integration patterns and services that start the integration process from scratch or
that consider an existing environment. Designing integrations of software solutions in the cloud requires knowledge of best
practices and patterns. Furthermore, it requires a deep understanding of the toolsets, services, and components each cloud
and framework offer. For example, alongside Azure Arc, AWS offers services like Systems Manager.

Before I start an integration project, I'm using the following algorithm:

• Keep in mind the KISS principle

• Have a look at existing integration patterns

• Check on what integration components and services other clouds provide

Therefore, multi-cloud integration means to make solutions and components of one cloud provider work with others using
existing integration cloud components and patterns.

Boris Zaikin, Software & Cloud Architect at Nordcloud GmbH
@borisza on DZone | @boris-zaikin on LinkedIn | boriszaikin.com

I'm a certified senior software and cloud architect who has solid experience designing and developing
complex solutions based on the Azure, Google, and AWS clouds. I have expertise in building distributed
systems and frameworks based on Kubernetes and Azure Service Fabric. My areas of interest include

enterprise cloud solutions, edge computing, high-load applications, multitenant distributed systems, and IoT solutions.

https://learn.microsoft.com/en-us/azure/cosmos-db/introduction
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://aws.amazon.com/systems-manager/
https://people.apache.org/~fhanik/kiss.html
https://dzone.com/users/3123245/borisza.html
https://www.linkedin.com/in/boris-zaikin/
https://www.boriszaikin.com/

PAGE 42TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

ADDITIONAL RESOURCES

MULTIMEDIA

Coding Over Cocktails
The Coding Over Cocktails podcast gives you
the tl;dr on application integration, digital
transformation, data management, and more.
Presenting easy-to-digest 30-minute episodes,

host David Brown interviews industry experts to bring you
insights into today's industry.

API Intersection: The Podcast
Jason Harmon's interviews with experienced
API experts showcase need-to-know advice,
information, and real-world experience. This
podcast is perfect for those who need a

little help solving a challenge — or for those who are simply
interested in learning more about APIs.

The Cloud Pod
If you are looking for advice on your cloud-
based system, check out The Cloud Pod.
This all tech, no marketing podcast will
inform you about the latest cloud news and

trends as cloud providers continue to evolve and add changes
to their APIs.

APIs You Won't Hate
Featuring a podcast (with only a little
nonsense), articles, books, and job postings,
the APIs You Won't Hate website is a great
go-to place for your API needs and wants.

With an active community and plenty of resources, you'll
find collaborative assistance and shared experiences to guide
you on your coding journey.

OpenObservability Talks
Catch this monthly podcast on your favorite
platform or stream it live, and tune in as
hosts Jonah Kowall and Dotan Horovits
discuss observability for DevOps. With a focus

on open-source technologies, episode topics range from
microservices based-systems to managing observability costs.

REFCARDS

API Integration Patterns
In this Refcard, readers will explore the fundamental patterns
for authentication, polling, querying, and more, helping you
assess your integration needs and approach the design,
build, and maintenance of your API integrations in the most
effective ways for your business case.

Microservices and Workflow Engines: Getting Started
With Agile Business Process Automation
This Refcard introduces a way to address business-process-
related challenges using a microservices architecture and a
workflow engine for orchestration. You'll learn key techniques
in areas such as microservices design, communication, and
state management, as well as first steps to take when getting
started with business process automation.

Getting Started With OpenTelemetry: Observability and
Monitoring for Modern Applications
As cloud migrations increase in number, OpenTelemetry aims
to reduce data collection time through automation. It is an
open-source collection of tools, APIs, SDKs, and specifications
that standardizes how to model and collect telemetry data.
This Refcard discusses core OpenTelemetry architecture
components, key features, and how to set up for tracing and
exporting telemetry data.

TREND REPORTS

Microservices and Containerization: The Intersection
of Cloud Architectures and Design Principles
This 2022 Trend Report dives into various cloud architecture
practices, microservices orchestration techniques, security,
and advice on design principles. The goal of this report is to
explore the current state of microservices and containerized
environments to help developers face the challenges of
complex architectural patterns.

Enterprise Application Integration
This 2022 Trend Report offers perspectives on cloud-based
integrations vs. on-prem models, how organizational culture
impacts successful API adoption, the different use cases
for GraphQL vs. REST, and why the 2020s should now be
considered the "Events decade." The goal of this report is to
provide diverse perspectives on integration to help make the
best choices for your organization.

Diving Deeper Into
Software Integration

https://www.torocloud.com/podcast
https://www.torocloud.com/podcast
https://stoplight.io/podcast
https://stoplight.io/podcast
https://www.thecloudpod.net/
https://www.thecloudpod.net/
https://apisyouwonthate.com/
https://apisyouwonthate.com/
https://openobservability.io/
https://openobservability.io/
https://dzone.com/refcardz/api-integration-patterns
https://dzone.com/refcardz/api-integration-patterns
https://dzone.com/refcardz/microservices-and-workflow-engines
https://dzone.com/refcardz/microservices-and-workflow-engines
https://dzone.com/refcardz/microservices-and-workflow-engines
https://dzone.com/refcardz/getting-started-with-opentelemetry
https://dzone.com/refcardz/getting-started-with-opentelemetry
https://dzone.com/refcardz/getting-started-with-opentelemetry
https://dzone.com/trendreports/microservices-and-containerization
https://dzone.com/trendreports/microservices-and-containerization
https://dzone.com/trendreports/microservices-and-containerization
https://dzone.com/trendreports/enterprise-application-integration
https://dzone.com/trendreports/enterprise-application-integration
https://stoplight.io/podcast
https://apisyouwonthate.com/
https://openobservability.io/
https://www.torocloud.com/podcast
https://www.thecloudpod.net/

PAGE 43TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

Solutions Directory

ADDITIONAL RESOURCES

This directory contains tools for API, cloud, iPaaS, microservices, and more to help manage your integration
processes. It provides pricing data and product category information gathered from vendor websites and
project pages. Solutions are selected for inclusion based on several impartial criteria, including solution
maturity, technical innovativeness, relevance, and data availability.

DZONE'S 2023 SOFTWARE INTEGRATION SOLUTIONS DIRECTORY

Company Product Purpose Availability Website

Elastic Path
Elastic Path
Commerce Cloud

SaaS microservices commerce Trial period
elasticpath.com/products/elastic-
path-commerce-cloud

Company Product Purpose Availability Website

Adeptia Connect Enterprise integration By request
adeptia.com/products/adeptia-
connect-enterprise-integration

AdroitLogic UltraESB-X Enterprise service bus By request adroitlogic.com/products/ultraesb

Aiven

Aiven for Apache Kafka
Fully managed distributed data
streaming platform

Trial period aiven.io/kafka

Karapace
Rest API and schema registry for
Apache Kafka

Open source karapace.io

Akana API Management Platform API lifecycle management Trial period akana.com/products/api-platform

Amazon Web
Services

Amazon MQ
Fully managed service for open-
source message brokers

Trial period

aws.amazon.com/amazon-mq

Amazon SNS Fully managed pub/sub service aws.amazon.com/sns

Amazon SQS Fully managed message queuing aws.amazon.com/sqs

Amazon SWF
Task coordination and
workflow service

aws.amazon.com/swf

AWS AppSync
App development with serverless
GraphQL and pub/sub APIs

aws.amazon.com/appsync

Step Functions
Visual workflows for distributed
applications

aws.amazon.com/step-functions

Apache Software
Foundation

ActiveMQ Java-based message broker

Open source

activemq.apache.org

Kafka
Distributed event streaming
platform

kafka.apache.org

Apollo Apollo Enterprise integration Free tier apollo.io/product/product-overview

Aspen Mesh Aspen Mesh App intelligence platform By request aspenmesh.io

AxonIQ Axon Framework
Event-driven microservices and
DDD framework

Open source
developer.axoniq.io/axon-
framework/overview

Axway
Amplify API Management
Platform

API lifecycle management By request
axway.com/en/products/amplify-api-
management-platform

Ballerina Ballerina
Programming language
for the cloud

Open source ballerina.io

Beamable Beamable
Full-stack LiveOps platform
for live games

Free tier beamable.com

Boomi AtomSphere Platform iPaaS Trial period boomi.com/platform

2023
PARTNER

https://www.elasticpath.com/products/elastic-path-commerce-cloud
https://www.elasticpath.com/products/elastic-path-commerce-cloud
https://www.adeptia.com/products/adeptia-connect-enterprise-integration
https://www.adeptia.com/products/adeptia-connect-enterprise-integration
https://www.adroitlogic.com/products/ultraesb/
https://aiven.io/kafka
https://www.karapace.io/
https://www.akana.com/products/api-platform
https://aws.amazon.com/amazon-mq
https://aws.amazon.com/sns/
https://aws.amazon.com/sqs/
https://aws.amazon.com/swf/
https://aws.amazon.com/appsync/
https://aws.amazon.com/step-functions/
https://activemq.apache.org/
https://kafka.apache.org/
https://www.apollo.io/product/product-overview/
https://aspenmesh.io/
https://developer.axoniq.io/axon-framework/overview
https://developer.axoniq.io/axon-framework/overview
https://www.axway.com/en/products/amplify-api-management-platform
https://www.axway.com/en/products/amplify-api-management-platform
https://ballerina.io/
https://beamable.com/
https://boomi.com/platform

PAGE 44TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

DZONE'S 2023 SOFTWARE INTEGRATION SOLUTIONS DIRECTORY

Company Product Purpose Availability Website

Broadcom Layer7 API Management Continuous API management By request
broadcom.com/products/software/
api-management

Camunda Camunda Platform Microservices orchestration Free tier camunda.com/platform

Celigo Integration Platform iPaaS Trial period celigo.com/platform

Cleo Cleo Integration Cloud Ecosystem integration By request cleo.com

Cloud Foundry Open Service Broker API
Back services for workloads
running on cloud-native platforms

Open source openservicebrokerapi.org

Cloud Native
Computing
Foundation

NATS
Connective technology for
distributed systems

Open source nats.io

DreamFactory DreamFactory API management By request dreamfactory.com

Dynatrace Dynatrace Software intelligence platform Trial period dynatrace.com/platform

Epsagon Epsagon Microservices observability Free tier epsagon.com

F5

NGINX App Protect
Modern WAF and denial of service
for app and API protection

Trial period

nginx.com/products/nginx-app-
protect

NGINX Management Suite
Security and API management
services

nginx.com/products/nginx-
management-suite

NGINX Plus
Reverse proxy, load balancer,
API gateway, and more

nginx.com/products/nginx

NGINX Service Mesh Service mesh Free
nginx.com/products/nginx-service-
mesh

Fiorano Software
Hybrid Integration
Platform

Workflow automation
and integration

Trial period
fiorano.com/products/fiorano_
hybrid_integration

Flowgear Flowgear iPaaS platform Trial period flowgear.net

Fujitsu Ltd
PRIMEFLEX Integrated
Systems

Hybrid data architecture
deployment and maintenance

By request
fujitsu.com/global/products/
computing/integrated-systems

Google Cloud

Anthos Service Mesh
Istio-based, fully managed
service mesh

Trial period

cloud.google.com/anthos/service-
mesh

API Gateway
API development, deployment,
and management

cloud.google.com/api-gateway

Apigee API Management Native API management cloud.google.com/apigee

Apigee Integration
API-first integration to connect
data and apps

cloud.google.com/apigee/
integration

Application Integration iPaaS
cloud.google.com/application-
integration/docs

Cloud APIs Workflow automation cloud.google.com/apis

Hasura Hasura
GraphQL and REST API creation
from your database(s)

Open source hasura.io

IBM

IBM API Connect API lifecycle management

Trial period

ibm.com/cloud/api-connect

IBM App Connect
App integration and API
development

ibm.com/cloud/app-connect

IFTTT IFTTT Integration management Free tier ifttt.com

InfluxData InfluxDB Cloud Time series data platform Free tier influxdata.com/cloud

Instana Instana Automated real-time observability Trial period instana.com

Integrate.io Integrate.io No-code data pipeline platform Trial period integrate.io

https://www.broadcom.com/products/software/api-management
https://www.broadcom.com/products/software/api-management
https://camunda.com/platform/
https://www.celigo.com/platform/
https://www.cleo.com/
https://www.openservicebrokerapi.org/
https://nats.io/
https://www.dreamfactory.com/
https://www.dynatrace.com/platform/
https://epsagon.com/
https://www.nginx.com/products/nginx-app-protect/
https://www.nginx.com/products/nginx-app-protect/
https://www.nginx.com/products/nginx-management-suite
https://www.nginx.com/products/nginx-management-suite
https://www.nginx.com/products/nginx
https://www.nginx.com/products/nginx-service-mesh/
https://www.nginx.com/products/nginx-service-mesh/
https://www.fiorano.com/products/fiorano_hybrid_integration
https://www.fiorano.com/products/fiorano_hybrid_integration
https://www.flowgear.net/
https://www.fujitsu.com/global/products/computing/integrated-systems/
https://www.fujitsu.com/global/products/computing/integrated-systems/
https://cloud.google.com/anthos/service-mesh
https://cloud.google.com/anthos/service-mesh
https://cloud.google.com/api-gateway
https://cloud.google.com/apigee
https://cloud.google.com/apigee/integration
https://cloud.google.com/apigee/integration
https://cloud.google.com/application-integration/docs
https://cloud.google.com/application-integration/docs
https://cloud.google.com/apis
https://hasura.io/
https://www.ibm.com/products/api-connect
https://www.ibm.com/products/app-connect
https://ifttt.com/
https://www.Influxdata.com/cloud/
https://www.instana.com/
https://www.integrate.io/

PAGE 45TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

DZONE'S 2023 SOFTWARE INTEGRATION SOLUTIONS DIRECTORY

Company Product Purpose Availability Website

Intersystems Ensemble Integration engine By request intersystems.com/ensemble

Istio Istio Service mesh Open source istio.io

Jaeger Jaeger End-to-end distributed tracing Open source jaegertracing.io

JHipster JHipster
Web apps and microservices
development platform

Open source jhipster.tech

Jitterbit Harmony Low-code integration platform By request jitterbit.com/harmony

Kong

Insomnia Collaborative API design platform Free tier insomnia.rest

Kong Enterprise
API gateway, microservices
management

By request
konghq.com/products/api-gateway-
platform

Lightbend

Akka Platform Reactive microservices frameworks Free tier lightbend.com/akka

Kalix
High-performance microservices
and APIs

Trial period kalix.io

Lightstep Lightstep Cloud-native reliability platform Free tier lightstep.com

Linkerd Linkerd Service mesh Open source linkerd.io

Magic Software Magic xpi Integration platform By request
magicsoftware.com/integration-
platform/xpi

Microsoft Azure

API Management
Hybrid, multi-cloud management
platform for APIs

Trial period

azure.microsoft.com/en-us/services/
api-management

Arc
Hybrid and multi-cloud
management

azure.microsoft.com/en-us/
products/azure-arc

Cloud Services
Scalable cloud application
and API management

azure.microsoft.com/en-us/
products/cloud-services

Logic Apps
Serverless workflow
integration tool

azure.microsoft.com/en-us/
products/logic-apps

Service Bus
Cloud messaging as a service and
hybrid integration

azure.microsoft.com/en-us/
products/service-bus

Service Fabric
Microservices development
platform

azure.microsoft.com/en-us/services/
service-fabric

Mulesoft Anypoint Platform Hybrid integration platform Trial period
mulesoft.com/platform/enterprise-
integration

Nutanix
Nutanix Cloud
Infrastructure

Hyperconverged infrastructure,
app, and data management

Trial period
nutanix.com/products/nutanix-
cloud-infrastructure

Okta Customer Identity Cloud Consumer and SaaS app security Trial period okta.com/customer-identity

OpenText

Artix Enterprise service bus Trial period
microfocus.com/en-us/products/
artix/overview

Hybrid Integration
Platform

Business integration environment By request
opentext.com/products/hybrid-
integration-platform

OpenLegacy OpenLegacy Hub Modernization platform By request openlegacy.com/ol-hub

OpenTelemetry OpenTelemetry Observability framework Open source opentelemetry.io

OpsLevel OpsLevel Microservices management Trial period opslevel.com

Oracle
Oracle Cloud
Infrastructure

iPaaS, cloud infrastructure
platform

Free tier oracle.com/cloud

Pact Pact
Web apps, API, and microservices
integration testing

Open source pact.io

Palo Alto
Networks

Prisma Cloud
Cloud-native application
protection platform

By request paloaltonetworks.com/prisma/cloud

https://www.intersystems.com/ensemble/
https://istio.io/
https://www.jaegertracing.io/
https://www.jhipster.tech/
https://www.jitterbit.com/harmony/
https://insomnia.rest/
https://konghq.com/products/api-gateway-platform
https://konghq.com/products/api-gateway-platform
https://www.lightbend.com/akka
https://www.kalix.io/
https://lightstep.com/
https://linkerd.io/
https://www.magicsoftware.com/integration-platform/xpi/
https://www.magicsoftware.com/integration-platform/xpi/
https://azure.microsoft.com/en-us/products/api-management/
https://azure.microsoft.com/en-us/products/api-management/
https://azure.microsoft.com/en-us/products/azure-arc
https://azure.microsoft.com/en-us/products/azure-arc
https://azure.microsoft.com/en-us/products/cloud-services/
https://azure.microsoft.com/en-us/products/cloud-services/
https://azure.microsoft.com/en-us/products/logic-apps/
https://azure.microsoft.com/en-us/products/logic-apps/
https://azure.microsoft.com/en-us/products/service-bus
https://azure.microsoft.com/en-us/products/service-bus
https://azure.microsoft.com/en-us/products/service-fabric/
https://azure.microsoft.com/en-us/products/service-fabric/
https://www.mulesoft.com/platform/enterprise-integration
https://www.mulesoft.com/platform/enterprise-integration
https://www.nutanix.com/products/nutanix-cloud-infrastructure
https://www.nutanix.com/products/nutanix-cloud-infrastructure
https://www.okta.com/customer-identity/
https://www.microfocus.com/en-us/products/artix/overview
https://www.microfocus.com/en-us/products/artix/overview
https://www.opentext.com/products/hybrid-integration-platform
https://www.opentext.com/products/hybrid-integration-platform
https://www.openlegacy.com/ol-hub
https://opentelemetry.io/
https://www.opslevel.com/
https://www.oracle.com/cloud/
https://pact.io/
https://www.paloaltonetworks.com/prisma/cloud

PAGE 46TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

DZONE'S 2023 SOFTWARE INTEGRATION SOLUTIONS DIRECTORY

Company Product Purpose Availability Website

Particular
Software

Particular Service Platform .NET service Free tier particular.net/service-platform

Peregrine
Connect

Management Suite End-to-end integration

Trial period

peregrineconnect.com/products/
management-suite

Neuron ESB App, API, and workflow integration
peregrineconnect.com/products/
neuron-esb

Postman Postman API platform Free tier postman.com

Red Hat

3scale API Management Self-managed API management Trial period
redhat.com/en/technologies/jboss-
middleware/3scale

OpenShift API
Management

Hosted and managed API
management

Sandbox
redhat.com/en/technologies/cloud-
computing/openshift/openshift-api-
management

Red Hat Fuse
Distributed, cloud-native
integration platform

Open source
redhat.com/en/technologies/jboss-
middleware/fuse

Red Hat Integration
Integration and messaging
technologies suite

By request redhat.com/en/products/integration

Redis Labs

Redis Enterprise Cloud
Caching, front-end database, and
real-time data platform

Trial period

redis.com/redis-enterprise-cloud/
overview

Redis Enterprise Software Self-managed data platform
redis.com/redis-enterprise-software/
overview

RoboMQ

Connect iPaaS
No-code for self-service API and
data integration

Trial period robomq.io/connect

Hybrid Integration
Platform

API and data integration By request
robomq.io/hybrid-integration-
platform

Runscope Runscope API monitoring Trial period runscope.com

Salt Security Salt Security API security By request salt.security

SAP
Business Technology
Platform

Integration, data to value,
and extensibility

By request
api.sap.com/products/
SAPCloudPlatform/overview

SEEBURGER Business Integration Suite Hybrid integration platform By request
seeburger.com/platform/business-
integration-suite

Smartbear

AlertSite Global, synthetic API monitoring
Trial period

smartbear.com/product/alertsite

ReadyAPI Low-code API testing platform smartbear.com/product/ready-api

SoapUI API testing tool Open source soapui.org/tools/soapui

SwaggerHub API development platform Trial period swagger.io/tools/swaggerhub

Snaplogic
Intelligent Integration
Platform

iPaaS By request
snaplogic.com/products/intelligent-
integration-platform

Software AG webMethods
APIs, integration, and
microservices management

By request
softwareag.com/en_corporate/
platform/integration-apis.html

Solo.io

Gloo Gateway API gateway and Kubernetes Ingress Trial period solo.io/products/gloo-gateway

Gloo Mesh
Istio-based service mesh and
control plane

Open source solo.io/products/gloo-mesh

Talend Data Fabric Data management Trial period talend.com/products/data-fabric

Thriftly Thriftly API toolkit for Windows Trial period thriftly.io

TIBCO Cloud™ API Management API management Trial period tibco.com/products/api-management

https://particular.net/service-platform
https://www.peregrineconnect.com/products/management-suite/
https://www.peregrineconnect.com/products/management-suite/
https://www.peregrineconnect.com/products/neuron-esb/
https://www.peregrineconnect.com/products/neuron-esb/
https://www.postman.com/
https://www.redhat.com/en/technologies/jboss-middleware/3scale
https://www.redhat.com/en/technologies/jboss-middleware/3scale
https://www.redhat.com/en/technologies/cloud-computing/openshift/openshift-api-management
https://www.redhat.com/en/technologies/cloud-computing/openshift/openshift-api-management
https://www.redhat.com/en/technologies/cloud-computing/openshift/openshift-api-management
https://www.redhat.com/en/technologies/jboss-middleware/fuse
https://www.redhat.com/en/technologies/jboss-middleware/fuse
https://www.redhat.com/en/products/integration
https://redis.com/redis-enterprise-cloud/overview/
https://redis.com/redis-enterprise-cloud/overview/
https://redis.com/redis-enterprise-software/overview/
https://redis.com/redis-enterprise-software/overview/
https://www.robomq.io/connect/
https://www.robomq.io/hybrid-integration-platform/
https://www.robomq.io/hybrid-integration-platform/
https://www.runscope.com/
https://salt.security/
https://api.sap.com/products/SAPCloudPlatform/overview
https://api.sap.com/products/SAPCloudPlatform/overview
https://www.seeburger.com/platform/business-integration-suite/
https://www.seeburger.com/platform/business-integration-suite/
https://smartbear.com/product/alertsite/
https://smartbear.com/product/ready-api/
https://www.soapui.org/tools/soapui/
https://swagger.io/tools/swaggerhub/
https://www.snaplogic.com/products/intelligent-integration-platform
https://www.snaplogic.com/products/intelligent-integration-platform
https://www.softwareag.com/en_corporate/platform/integration-apis.html
https://www.softwareag.com/en_corporate/platform/integration-apis.html
https://www.solo.io/products/gloo-gateway/
https://www.solo.io/products/gloo-mesh/
https://www.talend.com/products/data-fabric/
https://thriftly.io/
https://www.tibco.com/products/api-management

PAGE 47TREND REPORT | SOFTWARE INTEGRATION© 2023 DZONE, INC.

DZONE'S 2023 SOFTWARE INTEGRATION SOLUTIONS DIRECTORY

Company Product Purpose Availability Website

Traefik Labs

Traefik Enterprise
Ingress, API management, and
service mesh

Trial period traefik.io/traefik-enterprise

Traefik Mesh Non-invasive service mesh
Open source

traefik.io/traefik-mesh

Traefik Proxy Cloud-native application proxy traefik.io/traefik

Tyk
Tyk Cloud API management Trial period tyk.io/api-lifecycle-management

Tyk Gateway API gateway Open source tyk.io/open-source

UiPath UiPath Platform Business automation Trial period uipath.com/product

vFunction

vFunction Assessment
Hub

Monolith to microservices
assessment to transformation

Free tier

vfunction.com/products/
assessment-hub

vFunction Modernization
Hub

AI-driven monolith to
microservices transformation

vfunction.com/products/
modernization-hub

VMWare

Spring Cloud Stream
Event-driven microservices
framework Open source

spring.io/projects/spring-cloud-
stream

Spring Cloud Task Short-lived microservices framework spring.io/projects/spring-cloud-task

Tanzu Service Mesh
End-to-end connectivity and
security for modern apps

By request tanzu.vmware.com/service-mesh

Workato Workato
Integration and workflow
automation

By request workato.com

WSO2

Choreo Internal Developer
Platform

Full-lifecycle cloud-native
application development platform

Free tier wso2.com/choreo

Enterprise Integrator Hybrid integration platform Open source wso2.com/integration/micro-integrator

WSO2 API Manager
API management, governance,
and analysis

Trial period wso2.com/api-manager

Zoho Catalyst Serverless development suite Sandbox catalyst.zoho.com

https://traefik.io/traefik-enterprise/
https://traefik.io/traefik-mesh/
https://traefik.io/traefik/
https://tyk.io/api-lifecycle-management/
https://tyk.io/open-source/
https://www.uipath.com/product
https://vfunction.com/products/assessment-hub/
https://vfunction.com/products/assessment-hub/
https://vfunction.com/products/modernization-hub/
https://vfunction.com/products/modernization-hub/
https://spring.io/projects/spring-cloud-stream
https://spring.io/projects/spring-cloud-stream
https://spring.io/projects/spring-cloud-task
https://tanzu.vmware.com/service-mesh
https://www.workato.com/
https://wso2.com/choreo/
https://wso2.com/integration/micro-integrator/
https://wso2.com/api-manager/
https://catalyst.zoho.com/

At DZone, we foster a collaborative environment that empowers developers and tech professionals
to share knowledge, build skills, and solve problems through content, code, and community. We
thoughtfully — and with intention — challenge the status quo and value diverse perspectives so that,
as one, we can inspire positive change through technology.

Copyright © 2023 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by means of electronic, mechanical, photocopying,
or otherwise, without prior written permission of the publisher.

600 Park Offices Drive, Suite 300
Research Triangle Park, NC 27709
888.678.0399 | 919.678.0300

https://dzone.com/software-design-and-architecture

